首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships between surface sediment diatom assemblages and measured environmental variables from 77 lakes in the central Canadian arctic treeline region were examined using multivariate statistical methods. Lakes were distributed across the arctic treeline from boreal forest to arctic tundra ecozones, along steep climatic and environmental gradients. Forward selection in canonical correspondence analysis determined that dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), total nitrogen (TN), lake surface area, silica, lake‐water depth, and iron explained significant portions of diatom species variation. Weighted‐averaging (WA) regression and calibration techniques were used to develop inference models for DIC, DOC, and TN from the estimated optima of the diatom taxa to these environmental variables. Simple WA models with classical deshrinking produced models with the strongest predictive abilities for all three variables based on the bootstrapped root mean squared errors of prediction (RMSEP). WA partial least squares showed little improvement over the simpler WA models as judged by the jackknifed RMSEP. These models suggest that it is possible to infer trends in DIC, DOC, and TN from fossil diatom assemblages from suitably chosen lakes in the central Canadian arctic treeline region.  相似文献   

2.
Pienitz  Reinhard  Smol  John P. 《Hydrobiologia》1993,269(1):391-404
The relationship between diatom (Bacillariophyceae) taxa preserved in surface lake sediments and measured limnological and environmental variables in 22 lakes near Yellowknife (N.W.T.) was explored using multivariate statistical methods. The study sites are distributed along a latitudinal gradient that includes a strong vegetational gradient of boreal forests in the south to arctic tundra conditions in the north. Canonical correspondence analysis (CCA) revealed that lakewater concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) each accounted for independent and statistically significant proportions of variation in the distribution of diatom taxa. Weighted-averaging (WA) models were developed to infer DIC and DOC from the relative abundances of the 76 most common diatom taxa. These models can now be used to infer past DIC and DOC concentrations from diatom assemblages preserved in sediment cores of lakes in the Yellowknife area, which may provide quantitative estimates of changes in lakewater chemistry related to past vegetational shifts at treeline.  相似文献   

3.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

4.
Canonical correspondence analysis (CCA) was used to explore the relationship between measured environmental variables and surficial diatom (Bacillariophyceae) assemblages in alkaline lakes from southeastern Ontario. Total nitrogen (TN), watershed area, alkalinity, and maximum depth each explain significant (P ≤ 0.05) directions of variance in the distribution of diatom taxa. TN was highly correlated to total phosphorus (TP) (r = 0.92), chlorophyll a (r = 0.86), and Secchi depth (r =0.77). When a series of CCAs were run with the first axis constrained to each of these variables in turn, the ratio of the eigenvalue of the first axis to that of the second axis (λ1/λ2) was highest for TN, indicating that TN best explained the distribution of the diatom assemblages in this set of lakes. Furthermore, results of Monte Carlo permutation tests indicated that these four variables did not act independently on the diatom assemblages. Therefore, TN was selected to represent these four closely related variables to infer lake trophic status. Weighted-averaging regression and calibration (with classical deshrinking) were used to develop transfer functions to infer TN from the relative abundances of 83 diatom taxa recovered from the surficial sediments of 51 lakes. There was a good correlation between diatom-inferred TN concentrations and measured TN concentrations (r2= 0.75, n = 51). The weighted-averaging regression and calibration model was used to infer lake trophic status (represented by TN) from diatom assemblages presented in the sediments from Little Round Lake, Ontario. These data were used in conjunction with historical land-use data in order to quantify the sequence and extent of nutrient enrichment related to human activity in the watershed area.  相似文献   

5.
1. In the absence of historical water chemistry data, predictive biological indicator groups preserved in lake sediments can be employed to reconstruct the history of lake eutrophication. Diatoms are well established in this role, but to augment diatom‐based inferences of nutrient status we investigate the potential use of chironomid midges (Insecta: Chironomidae). 2. Canonical correspondence analysis (CCA) of modern chironomid assemblages in surface sediments from 44 lakes in the English Midlands and Wales, U.K., shows that five environmental variables (total phosphorus (TP), bottom dissolved oxygen, maximum lake depth, Secchi depth and surface water temperature) make a statistically significant (P < 0.05) contribution to explaining the variance in the chironomid data, of which TP makes the largest contribution (29%). 3. The relationship is used to develop a series of weighted averaging (WA) and partial least squares (PLS), (WA‐PLS) models to infer log10TP. The models are evaluated by leave‐one‐out (jack‐knifing) cross‐validation. The simplest minimal adequate model is provided by WA with unweighted inverse deshrinking of root mean square error of prediction (RMSEPjack=0.34 and r2jack=0.60). 4. Using this model, the trophic history of Betton Pool, Shropshire, U.K., is reconstructed from the mid‐19th century to the present day and the results from the chironomid‐TP model are compared with inferences from a diatom‐TP model ( 13 ). Both reconstructions suggest that there was a gradual rise in TP since 1850 AD until about 1974, followed by a more pronounced and rapid increase that has continued until the present. Inferred TP values from the WA chironomid inference model agree with diatom‐inferred values. 5. The study demonstrates that fossil chironomid assemblages can be used to investigate quantitatively the trophic history of lakes.  相似文献   

6.
R. Laugaste  M. Pork 《Hydrobiologia》1996,338(1-3):63-76
463 taxa of diatoms have been recorded from the pelagic and littoral plankton, benthos and periphyton of Lake Peipsi-Pihkva. This typical eutrophic plain lake has many common features with large lakes of both Central and North Europe. As to the richness of diatom taxa, L. Peipsi- Pihkva surpasses other eutrophic lowland lakes, which can be explained by the size of this lake, and by the variety of living conditions in it. The list of taxa as well as notes about rare and phytogeographically interesting diatoms are presented.Deceased.  相似文献   

7.
1. The Yangtze floodplain (SE China) is characterized by a number of large shallow lakes, many of which have undergone eutrophication due to the intensification of agriculture and urban growth over recent decades. As monitoring data are limited and in order to determine lake baseline nutrient concentrations, 49 lakes were sampled, covering a total phosphorus (TP) gradient (c. 30–550 μg L−1) to develop a diatom-based inference model. 2. There are three dominant diatom assemblages in these shallow lakes with a marked change in assemblage structure near the boundary between eutrophic and hypereutrophic nutrient levels (as indicated by their TP value). Canonical correspondence analysis indicated that TP was the most important and significant variable in explaining the diatom distributions, independently accounting for 9.5% variance of diatoms. 3. Forty-three lakes were used to generate a transfer function using weighted averaging (WA) with inverse deshrinking. This model had low predictive error (root mean squared error of prediction; RMSEPjack = 0.12) and a high coefficient of prediction (R2jack = 0.82), comparable with regional TP models elsewhere. The good performance of this TP model may reflect the low abundance of benthic diatom species which are commonly regarded as the main error source in European shallow lake WA models. 4. The WA model was used to reconstruct the past-TP concentrations for Taibai Lake, a shallow hypereutrophic lake in Hubei province. The results showed that TP concentration varied slightly (43–62 μg L−1) prior to the 1920s, indicating an eutrophic state since the 1800s. A period of sustained eutrophication occurred after 1950, because of the development of agriculture, reflecting by maximum values of Aulacoseira alpigena and increased abundance of Cyclotella meneghiniana, C. atomus and Cyclostephanos dubius. The steep increase in nutrient concentration after 1970 was related to the overuse of chemical fertilizer and fish farming in the catchment. 5. The shift in fossil diatoms from epiphytic to planktonic forms in the lake sediment core during 1950–70 provides useful information on the transformation from macrophyte-dominated to alga-dominated states. It is plausible that the TP concentration of 80–110 μg L−1 observed in this study is the critical range for switching between the two stable states in the lake. 6. The regional diatom-TP model developed in this study allows, therefore, the possibility of reconstructing historical background nutrient concentrations in lakes. It will provide an indication of the onset and development of eutrophication at any site. This is particularly important for the many lakes in the Yangtze floodplain where information about historical changes in water quality is lacking.  相似文献   

8.
1. The relationship between surficial sediment diatom taxa (Bacillariophyceae) and measured limnological variables in forty-six British Columbia lakes was explored using canonical correspondence analysis (CCA). Lake-water total phosphorus concentration (TP), maximum lake depth, conductivity, and calcium concentration each accounted for independent and statistically significant directions of variation in the distribution of diatom taxa. 2. Weighted-averaging (WA) models were developed to infer lake-water TP from the relative abundances of 131 diatom taxa in the surficial sediments of thirty-seven lakes. WA regression and calibration with classical deshrinking provided the best model for TP reconstructions. 3. Our quantitative inference model has two major advantages over existing multiple linear-regression models: (i) inferences are based on the responses of individual taxa to TP, and do not involve grouping the taxa into a small number of ecological categories; and (ii) the model assumes that diatoms respond to TP in a unimodal, rather than a linear, fashion. 4. The WA model can now be used to infer past lake-water TP, within the range 5–28νgr1?1, from diatoms preserved in the sediments of British Columbia lakes. The model can provide quantitative estimates of the onset, rate, and magnitude of lake eutrophication in response to natural processes and human disturbances.  相似文献   

9.
Relationships between taxonomic composition of shallow epilithic algal communities and nine environmental variables in 32 lakes of different trophic states in Ireland were explored using gradient analysis. A canonical correspondence analysis using four representative environmental variables, alkalinity (correlated with pH and conductivity), maximum phytoplankton chl a (CHLmax) (correlated with total P, total N, and chl), turbidity, and water color explained 21% of the variance in taxa distributions. The first two axes were significant and accounted for 77% of the variance in the periphyton–environmental relationship. The first axis was strongly related to alkalinity and color, which reflected geology and land use in the watersheds. The second axis was most correlated with CHLmax, and separation of lakes corresponded to their Organization for Economic Cooperation and Development (OECD) trophic classification based on water chemistry. Eutrophic lakes were characterized by cyanobacteria taxa and Stigeoclonium sp. Diatoms and desmids were generally more abundant in oligotrophic and mesotrophic lakes. Values for diatom trophic indices were poor indicators of trophic state. Weighted averaging regression and calibration techniques were used to develop transfer functions between 84 taxa and total P, total N, and CHLmax. The total P inference model predicted OECD trophic classification correctly for 84% of the lakes. Values for taxa preferences resulting from such models can provide the foundation for biomonitoring schemes using extant periphyton communities. The turnover time of periphyton taxa should integrate changes in environmental conditions at a temporal scale intermediate to surface‐sediment fossil diatom assemblages and water column variables, which may be more appropriate for detecting annual changes.  相似文献   

10.
11.
1. A weighted averaging (WA) regression and calibration model for diatoms and total phosphorus (TP) was developed from a dataset of 45 surface‐sediment samples from Swedish lakes. Jack‐knifed error statistics were comparable with those for similar diatom–TP datasets: r2jack=0.47, root mean squared error of prediction (RMSEP)=0.24 log10μg TP L–1 and mean bias=–0.002 log10 μg TP L–1 for the simple WA model; r2jack=0.36, RMSEP=0.27 log10 μg TP L–1 and mean bias=0.017 log10 μg TP L–1 for WA with tolerance downweighting. 2. The model was used to estimate TP concentrations for the Ekoln basin of Lake Mälaren using a 210Pb‐dated sediment core record. Highly eutrophic conditions developed in the basin in the 1960s as a result of nutrient inputs from cultivated land and the city of Uppsala. A reduction in the supply of phosphorus from sewage outlets in the late 1960s resulted in less eutrophic conditions. 3. The model results indicated levels of 50–60 μg TP L–1 prior to 1900. The rapid eutrophication of the lake basin after the 1950s and the subsequent recovery were evident from the diatom data. 4. Diatom‐inferred TP (DI–TP) values were validated by comparison with monitored data for the period 1966–95. The diatom model tended to underestimate TP at high levels (> 80 μg L–1) but overestimate at lower concentrations. 5. A good agreement was observed between the trends in TP concentration and the DI–TP concentration and the timing of the maximum was well reflected by the diatom‐based reconstruction. A significant correlation (r2=0.69, P < 0.01) was found between DI–TP and measured TP at this site.  相似文献   

12.
Ecotones are key areas for the detection of global change because many are predicted to move with shifts in climate. Prince of Wales Island, in the Canadian Arctic Archipelago, spans the transition between mid‐ to high‐Arctic ecoregions. We analyzed limnological variables and recent diatom assemblages from its lakes and ponds to determine if assemblages reflected this ecotone. Limnological gradients were short, and water chemistry explained 20.0% of diatom variance in a redundancy analysis (RDA), driven primarily by dissolved organic carbon, Ca and SO4. Most taxa were small, benthic forms; key taxa such as planktonic Cyclotella species were restricted to the warmer, southern portion of the study area, while benthic Staurosirella were associated with larger, ice‐dominated lakes. Nonetheless, there were no significant changes in diatom assemblages across the mid‐ to high‐Arctic ecoregion boundary. We combined our data set with one from nearby Cornwallis Island to expand the study area and lengthen its environmental gradients. Within this expanded data set, 40.6% of the diatom variance was explained by a combination of water chemistry and geographic variables, and significant relationships were revealed between diatom distributions and key limnological variables, including pH, specific conductivity, and chl‐a. Using principal coordinates analysis, we estimated community turnover with latitude and applied piecewise linear regression to determine diatom ecotone positions. A pronounced transition was present between Prince of Wales Island and the colder, more northerly Cornwallis Island. These data will be important in detecting any future northward ecotone movement in response to predicted Arctic climate warming in this highly sensitive region.  相似文献   

13.
Periphytic diatoms are potentially powerful indicators of environmental change in climatically‐sensitive high latitude regions. However, only a few studies have examined their taxonomic and ecological characteristics. We identified and enumerated diatom assemblages from sediment, rock, and moss habitats in 34 ultra‐oligotrophic and highly transparent lakes and ponds on Victoria Island, Arctic Canada. The similar limnological characteristics of the sites allowed us to examine the influence of habitat, independent of water chemistry, on the diatom assemblages. As is typical in shallow arctic water bodies, benthic taxa, including species of Achnanthes, Caloneis, Cymbella, Navicula, and Nitzschia, were most widely represented. Minor gradients in our measured environmental variables did not significantly explain any variance in diatom species, but there were marked differences in diatom assemblages among sites. Pond ephemerality seems to explain some diatom variation, because aerophilic taxa such as Achnanthes kryophila Petersen and A. marginulata Grunow were dominant in shallow sites that had undergone appreciable reductions in volume. We identified several taxa that exhibited strong habitat preferences to sediment, moss, or rock substrates and also found significant differences (P < 0.01) in diatom composition among the three habitats. In comparisons with three similar diatom surveys extending over 1200 km of latitude, we determined that surface sediment assemblages differed significantly (P < 0.001) among all regions examined. Diatom species diversity was inversely related to latitude, a result likely explained by differences in the lengths of growing seasons. These data contribute important ecological information on diatom assemblages in arctic regions and will aid in the interpretation of environmental changes in biomonitoring and paleolimnological studies.  相似文献   

14.
Epiphytic, epilithic, and surface sediment diatom assemblages were identified and enumerated from 35 study ponds on CapeHerschel (78°37″N, 74°42″W), east-central Ellesmere Island, Canada. All the sites are shallow (maximum depth <2 m), clear, oligotrophic, and freshwater. The ponds freeze completely for 10 months of the year. Major ion concentrations are relatively similar among the 35 sites, although environmental gradients exist. Over 130 diatom taxa from 28 genera were identified in the periphyton samples. Marked differences in species composition were evident among the ponds. Moreover, many of the diatoms exhibited varying degrees of microhabitat specificity. Variance partitioning by canonical correspondence analysis showed that 26% of the total variance exhibited by diatom species composition could be accounted for by the measured environmental variables (i.e. 10.2% by habitat and 15.8% by water chemistry). Pondwater alkalinity best explained the distribution of taxa, and weighted averaging regression and calibration were used to develop a transfer function to infer pondwater alkalinity from the diatom assemblages. Other important environmental variables included [Na+] for the epilithic and [SiO2] for the epiphytic assemblages.  相似文献   

15.
Diatom assemblages were analysed in the surface sediments of 44 alkaline lakes in south-western Ontario, Canada, and combined with a pre-existing 58 south-eastern Ontario lake set: (1) to determine if shallow, polymictic Ontario lakes contain different diatom assemblages from deeper, dimictic lakes, and if so, which environmental variables most influence assemblages; (2) to improve the existing transfer functions; (3) to construct and compare transfer functions separately for dimictic, deep lakes and for polymictic, shallow lakes. Polymictic and dimictic lakes covered a similar nutrient range (spring total phosphorus (TP)=4–54 g/l, spring total nitrogen (TN)=200–927 g/l; n=101) and spring pH levels (7.6–9; n=101). However, polymictic lakes were shallower (median mean depth = 2.9 m vs. 7.3 m in dimictic lakes). Benthic diatoms (average 60% relative abundance) dominated the polymictic lakes, whereas planktonic diatoms (average 60%) dominated dimictic lakes. A Canonical Correspondence Analyses with forward selection (p < 0.05, 999 Monte Carlo permutations) identified TP, alkalinity, watershed to volume ratios and lake depth as the most important measured environmental variables influencing diatom distribution in both polymictic and dimictic lakes. Additionally, pH was identified as an important variable in polymictic lakes, whereas TN was also forward selected in the dimictic lakes. Adding more lakes to the original southern Ontario calibration set improved the TN transfer function (r2 jack=0.42, root mean squared error of prediction (RMSEP)jack=0.11 [log g TN/l]), although there was a high systematic error in the revised model (r2 residual = 0.48). However, the strongest TP model was derived from the polymictic lakes (r2 boot =0.44, RMSEPboot=0.20 [log g TP/l]), which was the smallest lake set (n=30) with the lowest number of diatom species. The stronger TP model from the polymictic lakes may be partly due to the relatively low macrophyte cover in our polymictic lakes, which may lead to stronger benthic–pelagic coupling than in lakes with large macrophyte populations. Additionally, our study suggests that the Chrysophyceae cyst:diatom frustule ratio may be useful for indicating trends in TP levels of 35 g/l in alkaline lakes that are dimictic, but is not necessarily indicative of trophic state changes in shallow, polymictic lakes. Our study demonstrates that it may be important to construct separate diatom-based nutrient transfer functions for polymictic and dimictic lakes.  相似文献   

16.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

17.
SUMMARY 1. Seasonal phosphorus variability may be considerable in eutrophic lakes and patterns are influenced by internal, as well as external, nutrient loading. The strong seasonality of planktonic diatoms, with main growth periods in the spring and also in the autumn in meso‐ to eutrophic lakes, means that the measure of total phosphorus (TP) that is most relevant for diatom ecology may not be adequately assessed by single or few measurements during the year. 2. The diatom species assemblage of surface sediments can be used to infer in‐lake nutrient concentrations. Weighted averaging (WA) and weighted averaging partial least squares (WAPLS) regression and calibration models for diatoms and annual mean TP were developed for a 29‐site data set of Danish lakes based on (a) all diatom species and (b) planktonic species only. Jack‐knifed error statistics were: =0.37, root mean squared error of prediction (RMSEP)=0.28 log10μg TP L?1 and mean bias=0.04 log10μg TP L?1 for the WAPLS 2‐component model based on all species; =0.23, RMSEP= 0.32log10μg TP L?1 and mean bias=0.07 log10μg TP L?1 for the WA model with tolerance downweighting based on planktonic species only. These are comparable with similar, published data sets. 3. A subset of 23 sites was used to develop models based on seasonal TP measurements. Mean spring TP concentrations gave only slightly improved RMSEP values for models based on all species and plankton‐only (0.24 log10μg TP L?1 and 0.29 log10μg TP L?1, respectively). 4. Weighted averaging models derive environmental optima, for individual species, which are not necessarily of ecological relevance. However, good water chemistry data are required to model species' responses adequately and to develop calibration data sets.  相似文献   

18.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt,Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake.The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chzl a), Secchi depth (SD), dissolved inorganic phosphorus, C1-, SO42-, Mg2 , CO32-, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and C1-, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community.In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

19.
Benthic diatoms form a particularly important community in oligotrophic lakes, but factors influencing their distribution are not well known. This study reports the depth distribution of living motile and total diatoms (living plus dead diatoms) on both natural (from sand to fine organic mud) and artificial substrates in an oligotrophic lake. On artificial substrates, motile diatom densities peaked in abundance (24–30 cells · mm?2) between 0.6 and 1.9 m depth; on natural sediment surfaces, motile diatoms were generally more numerous and peaked in abundance (925 cells · mm?2) at 1.3 m depth. Total diatom densities on artificial substrates were highest (1260 valves · mm?2) at 0.6 m depth, with very low values below 3 m depth; on natural sediment surfaces, total diatom abundances were generally much higher (21600 valves · mm?2) at 3 m depth and declined gradually with depth. Significant relationships were found between light and diatom densities on the artificial substrate. Ordination analysis indicated that substrate type significantly correlated with the variation of diatom composition on artificial and natural substrates. Our results suggest that in oligotrophic lakes, light influences benthic diatom abundance, whereas substrate type has more influence on benthic diatom composition.  相似文献   

20.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt, Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake. The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chl a), Secchi depth (SD), dissolved inorganic phosphorus, Cl–, SO42–, Mg2+, CO32–, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and Cl–, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community. In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号