首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary convergence is a core issue in the study of adaptive evolution, as well as a highly debated topic at present. Few studies have analyzed this issue using a “real‐time” or evolutionary trajectory approach. Do populations that are initially differentiated converge to a similar adaptive state when experiencing a common novel environment? Drosophila subobscura populations founded from different locations and years showed initial differences and variation in evolutionary rates in several traits during short‐term (~20 generations) laboratory adaptation. Here, we extend that analysis to 40 more generations to analyze (1) how differences in evolutionary dynamics among populations change between shorter and longer time spans, and (2) whether evolutionary convergence occurs after 60 generations of evolution in a common environment. We found substantial variation in longer term evolutionary trajectories and differences between short‐ and longer term evolutionary dynamics. Although we observed pervasive patterns of convergence toward the character values of long‐established populations, populations still remain differentiated for several traits at the final generations analyzed. This pattern might involve transient divergence, as we report in some cases, indicating that more generations should lead to final convergence. These findings highlight the importance of longer term studies for understanding convergent evolution.  相似文献   

2.
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.  相似文献   

3.
Populations from the same species may be differentiated across contrasting environments, potentially affecting reproductive isolation among them. When such populations meet in a novel common environment, this isolation may be modified by biotic or abiotic factors. Curiously, the latter have been overlooked. We filled this gap by performing experimental evolution of three replicates of two populations of Drosophila subobscura adapting to a common laboratorial environment, and simulated encounters at three time points during this process. Previous studies showed that these populations were highly differentiated for several life‐history traits and chromosomal inversions. First, we show initial differentiation for some mating traits, such as assortative mating and male mating rate, but not others (e.g., female mating latency). Mating frequency increased during experimental evolution in both sets of populations. The assortative mating found in one population remained constant throughout the adaptation process, while disassortative mating of the other population diminished across generations. Additionally, differences in male mating rate were sustained across generations. This study shows that mating behavior evolves rapidly in response to adaptation to a common abiotic environment, although with a complex pattern that does not correspond to the quick convergence seen for life‐history traits.  相似文献   

4.
Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait‐specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory‐adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species‐specific plasticity.  相似文献   

5.
Adaptation to a new environment (as well as its underlying mechanisms) is one of the most important topics in Evolutionary Biology. Understanding the adaptive process of natural populations to captivity is essential not only in general evolutionary studies but also in conservation programmes. Since 1990, the Group of Experimental Evolution (CBA/FCUL) has been performing long-term, real-time evolutionary studies, with the characterization of laboratory adaptation in populations of Drosophila subobscura founded in different times and from different locations. Initially, these experiments involved phenotypic assays and more recently were expanded to studies at the molecular level (microsatellite and chromosomal polymorphisms) and with different population sizes. Throughout these two decades, a clear pattern of evolutionary convergence to long-established laboratory populations has been consistently observed in several life-history traits. However, contingencies across foundations were also found during the adaptive process. In characters with complex evolutionary trajectories, the data suggested that the comparative method lacked predictive capacity relative to real-time evolutionary trajectories (experimental evolution). Microsatellite analysis revealed general similarity in gene diversity and allele number between studied populations, as well as an unclear association between genetic variability and evolutionary potential. Nevertheless, ongoing studies in all foundations are being carried out to further test this hypothesis. A comparison between recently introduced and long-term populations (founded from the same natural location) has shown higher degree of chromosomal polymorphism in recent ones. Finally, our findings suggest higher heterogeneity between small-sized populations, as well as a slower evolutionary rate in characters close to fitness (such as fecundity and mating behaviour). This comprehensive study is aimed at better understanding the processes and patterns underlying adaptation to captivity, as well as its genetic basis.  相似文献   

6.
Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real‐time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.  相似文献   

7.
Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness‐related traits. Such trade‐offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade‐offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed‐selection lines and (2) comparing life‐history traits of evolved and control lines in pathogen‐free environments. Here, we used both approaches to examine trade‐offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life‐history traits between control and evolved populations were found in pathogen‐free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation.  相似文献   

8.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

9.
Admixture is the hybridization between populations within one species. It can increase plant fitness and population viability by alleviating inbreeding depression and increasing genetic diversity. However, populations are often adapted to their local environments and admixture with distant populations could break down local adaptation by diluting the locally adapted genomes. Thus, admixed genotypes might be selected against and be outcompeted by locally adapted genotypes in the local environments. To investigate the costs and benefits of admixture, we compared the performance of admixed and within‐population F1 and F2 generations of the European plant Lythrum salicaria in a reciprocal transplant experiment at three European field sites over a 2‐year period. Despite strong differences between site and plant populations for most of the measured traits, including herbivory, we found limited evidence for local adaptation. The effects of admixture depended on experimental site and plant population, and were positive for some traits. Plant growth and fruit production of some populations increased in admixed offspring and this was strongest with larger parental distances. These effects were only detected in two of our three sites. Our results show that, in the absence of local adaptation, admixture may boost plant performance, and that this is particularly apparent in stressful environments. We suggest that admixture between foreign and local genotypes can potentially be considered in nature conservation to restore populations and/or increase population viability, especially in small inbred or maladapted populations.  相似文献   

10.
Identifying mechanisms of adaptation to variable environments is essential in developing a comprehensive understanding of evolutionary dynamics in natural populations. Phenotypic plasticity allows for phenotypic change in response to changes in the environment, and as such may play a major role in adaptation to environmental heterogeneity. Here, the plasticity of stress response in Drosophila melanogaster originating from two distinct geographic regions and ecological habitats was examined. Adults were given a short‐term, 5‐day exposure to combinations of temperature and photoperiod to elicit a plastic response for three fundamental aspects of stress tolerance that vary adaptively with geography. This was replicated both in the laboratory and in outdoor enclosures in the field. In the laboratory, geographic origin was the primary determinant of the stress response. Temperature and the interaction between temperature and photoperiod also significantly affected stress resistance. In the outdoor enclosures, plasticity was distinct among traits and between geographic regions. These results demonstrate that short‐term exposure of adults to ecologically relevant environmental cues results in predictable effects on multiple aspects of fitness. These patterns of plasticity vary among traits and are highly distinct between the two examined geographic regions, consistent with patterns of local adaptation to climate and associated environmental parameters.  相似文献   

11.
Can a population evolved in two resources reach the same fitness in both as specialist populations evolved in each of the individual resources? This question is central to theories of ecological specialization, the maintenance of genetic variation, and sympatric speciation, yet relatively few experiments have examined costs of generalism over long‐term adaptation. We tested whether selection in environments containing two resources limits a population's ability to adapt to the individual resources by comparing the fitness of replicate Escherichia coli populations evolved for 6000 generations in the presence of glucose or lactose alone (specialists), or in varying presentations of glucose and lactose together (generalists). We found that all populations had significant fitness increases in both resources, though the magnitude and rate of these increases differed. For the first 4000 generations, most generalist populations increased in fitness as quickly in the individual resources as the corresponding specialist populations. From 5000 generations, however, a widespread cost of adaptation affected all generalists, indicating a growing constraint on their abilities to adapt to two resources simultaneously. Our results indicate that costs of generalism are prevalent, but may influence evolutionary trajectories only after a period of cost‐free adaptation.  相似文献   

12.
Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.  相似文献   

13.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

14.
Using experimental evolution, we investigated the contributions of ecological divergence, sexual selection, and genetic drift to the evolution of reproductive isolation in Caenorhabditis remanei. The nematodes were reared on two different environments for 100 generations. They were assayed for fitness on both environments after 30, 64, and 100 generations, and hybrid fitness were analyzed after 64 and 100 generations. Mating propensity within and between populations was also analyzed. The design allowed us to determine whether local adaptation was synchronous with pre‐ and postzygotic reproductive isolation. Prezygotic isolation evolved quickly but was unconnected with adaptation to the divergent environments. Instead, prezygotic isolation was driven by mate preferences favoring individuals from the same replicate population. A bottleneck treatment, meant to enhance the opportunity for genetic drift, had no effect on prezygotic isolation. Postzygotic isolation occurred in crosses where at least one population had a large fitness advantage in its “home” environment. Taken together, our results suggest that prezygotic isolation did not depend on drift or adaptation to divergent environments, but instead resulted from differences in sexual interactions within individual replicates. Furthermore, our results suggest that postzygotic isolation can occur between populations even when only one population has greater fitness in its home environment.  相似文献   

15.
Fitness effects of mutations may generally depend on temperature that influences all rate-limiting biophysical and biochemical processes. Earlier studies suggested that high temperatures may increase the availability of beneficial mutations (‘more beneficial mutations’), or allow beneficial mutations to show stronger fitness effects (‘stronger beneficial mutation effects’). The ‘more beneficial mutations’ scenario would inevitably be associated with increased proportion of conditionally beneficial mutations at higher temperatures. This in turn predicts that populations in warm environments show faster evolutionary adaptation but suffer fitness loss when faced with cold conditions, and those evolving in cold environments become thermal-niche generalists (‘hotter is narrower’). Under the ‘stronger beneficial mutation effects’ scenario, populations evolving in warm environments would show faster adaptation without fitness costs in cold environments, leading to a ‘hotter is (universally) better’ pattern in thermal niche adaptation. We tested predictions of the two competing hypotheses using an experimental evolution study in which populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, evolved for 2400 generations at three experimental temperatures. Results of reciprocal transplant experiments with our P. fluorescens populations were largely consistent with the ‘hotter is narrower’ prediction. Results from the E. coli populations clearly suggested stronger beneficial mutation effects at higher assay temperatures, but failed to detect faster adaptation in populations evolving in warmer experimental environments (presumably because of limitation in the supply of genetic variation). Our results suggest that the influence of temperature on mutational effects may provide insight into the patterns of thermal niche adaptation and population diversification across thermal conditions.  相似文献   

16.
Despite accumulating examples of selection acting on heritable traits in the wild, predicted evolutionary responses are often different from observed phenotypic trends. Various explanations have been suggested for these mismatches. These include within‐individual changes across lifespan that can create important variation in genetic architecture of traits and selection acting on them, but also potential problems with the methodological approach used to predict evolutionary responses of traits. Here, we used an 8‐year data set on tree swallow (Tachycineta bicolor) to first assess the effects of differences among three nestling life‐history stages on the genetic (co)variances of two morphological traits (body mass and primary feather length) and the selection acting on them over three generations. We then estimated the evolutionary potential of these traits by predicting their evolutionary responses using the breeder's equation and the secondary theorem of selection approaches. Our results showed variation in strength and direction of selection and slight changes in trait variance across ages. Predicted evolutionary responses differed importantly between both approaches for half of the trait–age combinations we studied, suggesting the presence of environmentally induced correlations between focal traits and fitness possibly biasing breeder's equation predictions. Our results emphasize that predictions of evolutionary potential for morphological traits are likely to be highly variable, both in strength and direction, depending on the life stage and method used, thus mitigating our capacity to predict adaptation and persistence of wild populations.  相似文献   

17.
Selection experiments with Drosophila have revealed constraints on the simultaneous evolution of life history traits. However, the responses to selection reported by different research groups have not been consistent. Two possible reasons for these inconsistencies are (i) that different groups used different environments for their experiments and (ii) that the selection environments were not identical to the assay environments in which the life history traits were measured. We tested for the effect of the assay environment in life history experiments by measuring a set of Drosophila selection lines in laboratories working on life history evolution with Drosophila in Basel, Groningen, Irvine and London. The lines measured came from selection experiments from each of these laboratories. In each assay environment, we measured fecundity, longevity, development time and body size. The results show that fecundity measurements were particularly sensitive to the assay environment. Differences between assay and selection environment in the same laboratory or differences between assay environments between laboratories could have contributed to the differences in the published results. The other traits measured were less sensitive to the assay environment. However, for all traits there were cases where the measurements in one laboratory suggested that selection had an effect on the trait, whereas in other laboratories no such conclusion would have been drawn. Moreover, we provide good evidence for local adaptation in early fecundity for lines from two laboratories.  相似文献   

18.
We demonstrate a clear example of local adaptation of seasonal timing of spawning and embryo development. The consequence is a population of pink salmon that is segmented into spawning groups that use the same limited habitat. We synthesize published observations with results of new analyses to demonstrate that genetic variation of these traits results in survival differentials related to that variation, and that density‐dependent embryo mortality and seasonally variable juvenile mortality are a mechanism of selection. Most examples of local adaptation in natural systems depend on observed correlations between environments and fitness traits, but do not fully demonstrate local adaptation: that the trait is genetically determined, exhibits different fitness in common environments or across different environments, and its variation is mechanistically connected to fitness differences. The geographic or temporal scales of local adaptation often remain obscure. Here, we show that heritable, fine‐scale differences of timing of reproductive migration in a pink salmon (Oncorhynchus gorbuscha) resulted in temporal structure that persisted several generations; the differences enable a density‐dependent population to pack more spawners into limited spawning habitat, that is, enhance its fitness. A balanced trade‐off of survivals results because embryos from early‐migrating fish have a lower freshwater survival (harsh early physical conditions and disturbance by late spawners), but emigrant fry from late‐migrating fish have lower marine survivals (timing of their vernal emergence into the estuarine environment). Such fine‐scale local adaptations increase the genetic portfolio of the populations and may provide a buffer against the impacts of climate change.  相似文献   

19.
Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.  相似文献   

20.
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance–covariance ( G ) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between‐environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between‐population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G . Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号