首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Reducing emissions from deforestation and forest degradation (REDD+) requires developing countries to quantify greenhouse gas emissions and removals from forests in a manner that is robust, transparent, and as accurate as possible. Although shifting cultivation is a dominant practice in several developing countries, there is still very limited information available on how to monitor this land‐use practice for REDD+ as little is known about the areas of shifting cultivation or the net carbon balance. In this study, we propose and test a methodology to monitor the effect of the shifting cultivation on above‐ground carbon stocks. We combine multiyear remote sensing information, taken from a 12‐year period, with an in‐depth community forest carbon stock inventory in Palo Seco Forest Reserve, western Panama. Using remote sensing, we were able to separate four forest classes expressing different forest‐use intensity and time‐since‐intervention, which demonstrate expected trends in above‐ground carbon stocks. The addition of different interventions observed over time is shown to be a good predictor, with remote sensing variables explaining 64.2% of the variation in forest carbon stocks in cultivated landscapes. Multitemporal and multispectral medium‐resolution satellite imagery is shown to be adequate for tracking land‐use dynamics of the agriculture‐fallow cycle. The results also indicate that, over time, shifting cultivation has a transitory effect on forest carbon stocks in the study area. This is due to the rapid recovery of forest carbon stocks, which results in limited net emissions. Finally, community participation yielded important additional benefits to measuring carbon stocks, including transparency and the valorization of local knowledge for biodiversity monitoring. Our study provides important inputs regarding shifting cultivation, which should be taken into consideration when national forest monitoring systems are created, given the context of REDD+ safeguards.  相似文献   

2.
Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%–82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10‐fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.  相似文献   

3.
The United Nations climate treaty may soon include a mechanism for compensating tropical nations that succeed in reducing carbon emissions from deforestation and forest degradation, source of nearly one fifth of global carbon emissions. We review the potential for this mechanism [reducing emissions from deforestation and degradation (REDD)] to provoke ecological damages and promote ecological cobenefits. Nations could potentially participate in REDD by slowing clear‐cutting of mature tropical forest, slowing or decreasing the impact of selective logging, promoting forest regeneration and restoration, and expanding tree plantations. REDD could also foster efforts to reduce the incidence of forest fire. Potential ecological costs include the accelerated loss (through displaced agricultural expansion) of low‐biomass, high‐conservation‐value ecosystems, and substitution of low‐biomass vegetation by monoculture tree plantations. These costs could be avoided through measures that protect low‐biomass native ecosystems. Substantial ecological cobenefits should be conferred under most circumstances, and include the maintenance or restoration of (1) watershed functions, (2) local and regional climate regimes, (3) soils and biogeochemical processes, (4) water quality and aquatic habitat, and (5) terrestrial habitat. Some tools already being developed to monitor, report and verify (MRV) carbon emissions performance can also be used to measure other elements of ecosystem function, making development of MRV systems for ecological cobenefits a concrete possibility. Analysis of possible REDD program interventions in a large‐scale Amazon landscape indicates that even modest flows of forest carbon funding can provide substantial cobenefits for aquatic ecosystems, but that the functional integrity of the landscape's myriad small watersheds would be best protected under a more even spatial distribution of forests. Because of its focus on an ecosystem service with global benefits, REDD could access a large pool of global stakeholders willing to pay to maintain carbon in forests, thereby providing a potential cascade of ecosystem services to local stakeholders who would otherwise be unable to afford them.  相似文献   

4.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

5.
New climate change agreements emerging from the 21st Conference of the Parties and ambitious international commitments to implement forest and landscape restoration (FLR) are generating unprecedented political awareness and financial mobilization to restore forests at large scales on deforested or degraded land. Restoration interventions aim to increase functionality and resilience of landscapes, conserve biodiversity, store carbon, and mitigate effects of global climate change. We propose four principles to guide tree planting schemes focused on carbon storage and commercial forestry in the tropics in the context of FLR. These principles support activities and land uses that increase tree cover in human‐modified landscapes, while also achieving positive socioecological outcomes at local scales, in an appropriate contextualization: (1) restoration interventions should enhance and diversify local livelihoods; (2) afforestation should not replace native tropical grasslands or savanna ecosystems; (3) reforestation approaches should promote landscape heterogeneity and biological diversity; and (4) residual carbon stocks should be quantitatively and qualitatively distinguished from newly established carbon stocks. The emerging global restoration movement and its growing international support provide strong momentum for increasing tree and forest cover in mosaic landscapes. The proposed principles help to establish a platform for FLR implementation and monitoring based on a broad set of socioenvironmental benefits including, but not solely restricted, to carbon mitigation and wood production.  相似文献   

6.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

7.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

8.
Cities are thought to be associated with most of humanity's consumption of natural resources and impacts on the environment. Cities not only constitute major centers of economic activity, knowledge, innovation, and governance—they are also said to be linked to approximately 70% to 80% of global carbon dioxide emissions. This makes cities primary agents of change in a resource‐ and carbon‐constraint world. In order to set meaningful targets, design successful policies, and implement effective mitigation strategies, it is important that greenhouse gas (GHG) emissions accounting for cities is accurate, comparable, comprehensive, and complete. Despite recent developments in the standardization of city GHG accounting, there is still a lack of consistent guidelines regarding out‐of‐boundary emissions, thus hampering efforts to identify mitigation priorities and responsibilities. We introduce a new conceptual framework—based on environmental input‐output analysis—that allows for a consistent and complete reconciliation of direct and indirect GHG emissions from a city. The “city carbon map” shows local, regional, national, and global origins and destinations of flows of embodied emissions. We test the carbon map concept by applying it to the greater metropolitan area of Melbourne, Australia. We discuss the results and limitations of the approach in the light of possible mitigation strategies and policies by different urban stakeholders.  相似文献   

9.
Evaluating contributions of forest ecosystems to climate change mitigation requires well‐calibrated carbon cycle models with quantified baseline carbon stocks. An appropriate baseline for carbon accounting of natural forests at landscape scales is carbon carrying capacity (CCC); defined as the mass of carbon stored in an ecosystem under prevailing environmental conditions and natural disturbance regimes but excluding anthropogenic disturbance. Carbon models require empirical measurements for input and calibration, such as net primary production (NPP) and total ecosystem carbon stock (equivalent to CCC at equilibrium). We sought to improve model calibration by addressing three sources of errors that cause uncertainty in carbon accounting across heterogeneous landscapes: (1) data‐model representation, (2) data‐object representation, (3) up‐scaling. We derived spatially explicit empirical models based on environmental variables across landscape scales to estimate NPP (based on a synthesis of global site data of NPP and gross primary productivity, n=27), and CCC (based on site data of carbon stocks in natural eucalypt forests of southeast Australia, n=284). The models significantly improved predictions, each accounting for 51% of the variance. Our methods to reduce uncertainty in baseline carbon stocks, such as using appropriate calibration data from sites with minimal human disturbance, measurements of large trees and incorporating environmental variability across the landscape, have generic application to other regions and ecosystem types. These analyses resulted in forest CCC in southeast Australia (mean total biomass of 360 t C ha?1, with cool moist temperate forests up to 1000 t C ha?1) that are larger than estimates from other national and international (average biome 202 t C ha?1) carbon accounting systems. Reducing uncertainty in estimates of carbon stocks in natural forests is important to allow accurate accounting for losses of carbon due to human activities and sequestration of carbon by forest growth.  相似文献   

10.
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co‐benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time‐frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits to achieve systematically maximal cobenefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision‐makingrules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio‐economic models to find restoration solutions that maximize simultaneously biodiversity, carbon stocks, and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost‐effective and adaptable forest management rules to achieve biodiversity, carbon sequestration, and other socio‐economic co‐benefits under global change.  相似文献   

11.
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long‐term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.  相似文献   

12.
One of the major objectives of the current expansion in bioenergy cropping is to reduce global greenhouse gas emissions for environmental benefit. The cultivation of bioenergy and biofuel crops also affects biodiversity more directly, both positively and negatively. Ecological impact assessment methods for bioenergy projects (including changes to policy and land use) should address not simply changes to species abundance at field level, but include larger scale issues, including changes to landscape diversity, potential impacts to primary and secondary habitats and potential impacts on climate change. Such assessments require a correspondingly broad range of scientific methods, including modelling of climate and land use as well as the observation of biodiversity and landscape indicators. It is also possible to adopt evidence-based guidelines for good practice for situations where comprehensive assessments are not available. These might include favouring projects and policies that avoid gene flow to wild relatives of crops in centres of diversity, that do not result in invasion by the crop into other habitats, that enhance field-scale biodiversity, that increase landscape diversity, that do not threaten valued habitats within the local landscape, that promote the sustainable management of biodiverse habitats, that do not increase the risk of loss of primary habitats and that result in a proportionately large reduction in greenhouse gas emissions.  相似文献   

13.
减少发展中国家因森林砍伐与森林退化导致的碳排放和保持碳储量(REDD+),不仅能减少因森林砍伐和森林退化造成的碳排放,而且还可以带来其它生态效益,如减缓森林破碎化、保护生物多样性和增强水土保持功能等。以中国的西双版纳地区为研究区域,以毁林最严重的1976—2007年为REDD+基线,基于卫星影像,并结合植被指数,提取了研究区的土地利用变化信息。基于IPCC温室气体清单方法,计算了研究区的森林碳储量变化。在此基础上,对REDD+的碳汇效益和生态效益进行了系统综合评估。结果显示:(1)1976—2007年间天然林碳储量从占总碳储量的78.24%减少至50.52%,这是造成西双版纳地区碳储量减少的主要原因。(2)1976—2007年,天然林的斑块数量和平均最近邻距离分别增加了120.00%和25.21%,平均斑块面积下降了71.98%,说明天然林的破碎化程度加剧。从研究区整体景观格局来看,斑块数量、Shannon多样性指数和Shannon均一性指数分别增加了8.16%、51.39%和34.07%;与此同时,平均斑块面积和景观内聚力指数分别下降了26.26%和2.13%,表明研究区整体景观格局...  相似文献   

14.
Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatum L.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2 concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2 was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.  相似文献   

15.
The Grove of Giants in the Huon Valley of Tasmania, Australia is renowned for its large trees. A team of tree climbers and citizen scientists undertook a carbon assessment of a 2 hectare plot within the Grove of Giants. The largest 16 trees in the plot (>2.5 m DBH) were measured by tree climbers allowing for accurate estimation of tree volume. Understory trees, coarse woody debris, root biomass and soil carbon were also estimated, making this study the most comprehensive assessment of forest carbon in Tasmania. Total forest carbon was estimated to be 1312 tonnes per hectare. Large trees had the highest carbon stocks, accounting for 44% of the total store. Coarse woody debris represented 19% of the forest's carbon, root biomass was 14%, while the understory trees accounted for 12% and soil carbon for 11%. This is the highest carbon stock recorded in Tasmania and is above the average estimates for temperate forest ecosystems in other parts of the world. Protecting Tasmania's forests, especially mature wet Eucalypt forests, is important to avoid potential greenhouse gas emissions and ensure safe storage of the carbon in the land sector.  相似文献   

16.
Abstract

The prognosis and utility under climate change are presented for two old‐growth, temperate forests in Australia, from ecological and carbon accounting perspectives. The tall open‐forests (TOFs) of south‐western Australia (SWA) are within Australia’s global biodiversity hotspot. The forest management and timber usage from the carbon‐dense old‐growth TOFs of Tasmania (TAS) have a high carbon efflux, rendering it a carbon hotspot. Under climate change the warmer, dryer climate in both areas will decrease carbon stocks directly; and indirectly through changes towards dryer forest types and through positive feedback. Near 2100, climate change will decrease soil organic carbon (SOC) significantly, e.g. by ~30% for SWA and at least 2% for TAS. The emissions from the next 20 years of logging old‐growth TOF in TAS, and conversion to harvesting cycles, will conservatively reach 66(±33) Mt‐CO2‐equivalents in the long‐term – bolstering greenhouse gas emissions. Similar emissions will arise from rainforest SOC in TAS due to climate change. Careful management of old‐growth TOFs in these two hotspots, to help reduce carbon emissions and change in biodiversity, entails adopting approaches to forest, wood product and fire management which conserve old‐growth characteristics in forest stands. Plantation forestry on long‐cleared land and well‐targeted prescribed burning supplement effective carbon management.

Abbreviations: C, carbon; CBS, clearfell, burn and sow; CO2‐e, CO2 equivalents; CWD, coarse woody debris; DOC, dissolved organic carbon; GHG, greenhouse gas; Mt, megatonnes; SOC, soil organic carbon; SWA, south‐western Australia; SWAFR, Southwest Australian Floristic Region; TAS, Tasmania; TOF, tall open‐forest; t‐C ha?1 yr?1, tonnes of carbon per hectare per year  相似文献   

17.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   

18.
With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape (‘land‐sharing’ agriculture) or a few large contiguous blocks alongside intensive farmland (‘land‐sparing’ agriculture). In this study, we are the first to integrate carbon storage alongside multi‐taxa biodiversity assessments to compare land‐sparing and land‐sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó‐Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land‐sparing strategies would be more beneficial for both carbon storage and biodiversity than land‐sharing strategies across a range of production levels. Biodiversity benefits of land‐sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land‐sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land‐allocation strategies and long‐term ecosystem service provision.  相似文献   

19.
Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double.  相似文献   

20.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号