共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis) 总被引:1,自引:0,他引:1
Acceleration of growth following a period of diet restriction may result in either complete or partial catch-up in size. The existence of such compensatory growth indicates that organisms commonly grow at rates below their physiological maxima and this implies a cost for accelerated growth. We examined patterns of accelerated growth in response to temporary resource limitation, and assayed both short and long-term costs of this growth in the ladybird beetle Harmonia axyridis. Subsequent to the period of food restriction, accelerated growth resulted in complete compensation for body sizes, although we observed greater larval mortality during the period of compensation. There were no effects on female fecundity or survivorship within 3 months of maturation. Females did not discriminate against males that had undergone compensatory growth, nor did we observe effects on male mating behaviour. However, individuals that underwent compensatory growth died significantly sooner when deprived of food late in adult life, suggesting that longer-term costs of compensatory growth may be quite mild and detectable only under stressful conditions. 相似文献
2.
HOWARD P. RIESSEN 《Freshwater Biology》2012,57(7):1422-1433
1. Inducible defences are advantageous because they protect the prey while limiting associated fitness costs. The presence of these costs is an essential component of this conditional strategy, since their absence would favour constitutive (fixed) defences. In some cases, however, these costs have been difficult to measure because of complex interactions between the defences themselves, resultant life history changes and the organism’s environment. 2. The pond‐dwelling water flea, Daphnia pulex, forms defensive neck spines in response to kairomones released by predatory larvae of the phantom midge, Chaoborus. This predator–prey interaction and the formation of these inducible defences have been well studied, but costs associated with the development of neck spines remain unclear. In this study, I address this problem by analysing the effect of Chaoborus kairomones on the life history responses (and fitness costs associated with these responses) of two clones of D. pulex that are from the same pond population, but differ greatly in their degree of neck spine development. 3. Both D. pulex clones exhibited the same predator‐induced shifts in life history: larger size at birth, reduced juvenile growth rate (producing a smaller size at maturity), delayed reproduction and a reduction in the number of neonates produced after the first clutch. Relative fitness decreased significantly and to the same degree (c. 10% reduction in r) in each clone. This observed fitness cost was not directly related to the neck spines per se since the cost was the same in both clones, despite their considerable differences in neck spine development. Rather, it appears to be indirectly related to this antipredator morphology via a combination of delayed reproduction and a set of life history trade‐offs (decreased growth rate, decreased reproduction after the first clutch) for increased neonate body size, which is necessary for neck spines to be effective defences. This suite of induced responses is probably a result of local adaptation of these two D. pulex clones to their common pond environment. 4. Costs of inducible defences do not always entail direct allocation costs associated with forming and maintaining a defence, but may also involve indirect life history responses that are specific to particular environmental situations. This local adaptation would explain the highly variable life history responses observed among D. pulex clones from different pond environments. 相似文献
3.
1. This study examined biological characteristics of sexual and asexual strains of the parasitoid wasp, Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). 2. Strains were reared in different instar hosts (the black bean aphid, Aphis fabae Scopoli) under identical environmental conditions (21 °C, 65–75% RH, and LD 16:8 h). 3. Results showed that the second instar of the aphid is the most suitable growth stage for both strains, as the wasps that emerged from the second instar hosts were larger, more fecund, and had larger egg size. Trade‐offs between the fitness components of the parasitoid were clearer when the parasitoids were reared in suboptimal instars. 4. According to the results, sexual females emerged around 1 day earlier and lived around 0.5 day less than asexual females. Also, sexual females emerged with a lower initial egg load, although these wasps tend to have larger eggs than asexual females. Asexual females may enjoy greater longevity and higher developmental plasticity which suggests a higher degree of synchronization with pest population dynamism. 5. The results suggest that sexual wasps, in contrast to asexual wasps, invest more in egg size than in egg load. This study suggests strain‐specific adaptations of L. fabarum to different instars of the black bean aphid by which the allocation of nutritional resources to various functions differs between strains. 6. Furthermore, differences in life history traits between strains can greatly influence the population dynamics of each strain, and hence their effectiveness in suppressing pest populations. 相似文献
4.
We used horn measurements from natural and hunted mortalities of male thinhorn sheep Ovis dalli from Yukon Territory, Canada, to examine the relationship between rapid growth early in life and longevity. We found that rapid growth was associated with reduced longevity for sheep aged 5 years and older for both the hunted and natural mortality data sets. The negative relationship between growth rate and longevity in hunted sheep can at least partially be explained by morphologically biased hunting regulations. The same trend was evident from natural mortalities from populations that were not hunted or underwent very limited hunting, suggesting a naturally imposed mortality cost directly or indirectly associated with rapid growth. Age and growth rate were both positively associated with horn size at death for both data sets, however of the two growth rate appeared to be a better predictor. Large horn size can be achieved both by individuals that grow horns rapidly and by those that have greater longevity, and the trade-off between growth rate and longevity could limit horn size evolution in this species. The similarity in the relationship between growth rate and longevity for hunted and natural mortalities suggests that horn growth rate should not respond to artificial selection. Our study highlights the need for the existence and study of protected populations to properly assess the impacts of selective harvesting. 相似文献
5.
Sonya K. Auer Jeffrey D. Arendt Radhika Chandramouli David N. Reznick 《Ecology letters》2010,13(8):998-1007
6.
Sylvain Fournet Delphine Eoche‐Bosy Lionel Renault Frédéric M. Hamelin Josselin Montarry 《Ecology and evolution》2016,6(8):2559-2568
Trade‐offs between virulence (defined as the ability to infect a resistant host) and life‐history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life‐history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations. 相似文献
7.
Antagonistic pleiotropy (AP) is a genetic trade‐off between different fitness components. In annual plants, a trade‐off between days to flower (DTF) and reproductive capacity often determines how many individuals survive to flower in a short growing season, and also influences the seed set of survivors. We develop a model of viability and fecundity selection informed by many experiments on the yellow monkeyflower, Mimulus guttatus, but applicable to many annual species. A viability/fecundity trade‐off maintains stable polymorphism under surprisingly general conditions. We also introduce both spatial heterogeneity and temporal stochasticity in environmental parameters. Neither is necessary for polymorphism, but spatial heterogeneity allows polymorphism while also generating the often observed non‐negative correlations in fitness components. 相似文献
8.
《Evolutionary Applications》2017,10(3):215-225
Central to evolutionary theory is the idea that living organisms face phenotypic and/or genetic trade‐offs when allocating resources to competing life‐history demands, such as growth, survival, and reproduction. These trade‐offs are increasingly considered to be crucial to further our understanding of cancer. First, evidences suggest that neoplastic cells, as any living entities subject to natural selection, are governed by trade‐offs such as between survival and proliferation. Second, selection might also have shaped trade‐offs at the organismal level, especially regarding protective mechanisms against cancer. Cancer can also emerge as a consequence of additional trade‐offs in organisms (e.g., eco‐immunological trade‐offs). Here, we review the wide range of trade‐offs that occur at different scales and their relevance for understanding cancer dynamics. We also discuss how acknowledging these phenomena, in light of human evolutionary history, may suggest new guidelines for preventive and therapeutic strategies. 相似文献
9.
The ability of bottom‐dwelling marine epifauna to regenerate injured or lost body parts is critical to the survival of individuals from disturbances that inflict wounds. Numerous studies on marine sponges (Phlyum Porifera) and corals (of the orders Scleractinia and Alcyonacea) suggest that regeneration is limited by many intrinsic (individual‐dependent) and extrinsic (environment‐dependent) factors, and that other life history processes may compete with regeneration for energetic and cellular resources. We review how intrinsic (size, age, morphology, genotype) and extrinsic (wound characteristics, water temperature, food availability, sedimentation, disturbance history, selection) factors limit regeneration in sponges and corals. We then review the evidence for impaired somatic growth and sexual reproduction, and altered outcomes of interactions (anti‐predator defenses, competitive abilities, self‐ and non‐self recognition abilities) with other organisms in regenerating sponges and corals. We demonstrate that smaller, older sponges and corals of decreasing morphological complexities tend to regenerate less well than others, and that regeneration can be modulated by genotype. Large wounds with small perimeters inflicted away from areas where resources are located tend to be regenerated less well than others, as are injuries inflicted when food is limited and when the animal has been previously or recently injured. We also demonstrate that regeneration strongly impairs somatic growth, reduces aspects of sexual reproduction, and decreases the ability for sponges and corals to defend themselves against predators, to compete, and to recognize conspecifics. Effects of limited regeneration and impaired life histories may manifest themselves in higher levels of biological assembly e.g., reduced accretion of epifaunal biomass, reduced recruitment and altered biotic associations, and thus affect marine community and ecosystem recovery from disturbances. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
To gain a selective advantage for survival in stochastic environments, the growth of different body parameters of juvenile animals should be constantly adjusted according to prevailing conditions. Hormones, especially insulin‐like growth factor 1 (IGF‐1), are an important part of physiological mechanisms mediating life‐history variability in free‐living animals when connecting available resources (e.g. food) with pathways of somatic growth. We used an IGF‐1 injection treatment in free‐living European Pied Flycatcher Ficedula hypoleuca nestlings to mimic experimentally the differentiation of growth conditions for chicks with a similar genetic background. We showed that there is probably a physiological trade‐off for young animals between the growth rates of structural size and body mass, where IGF‐1 could be part of the physiological modulatory system of this trade‐off. By weakening internal constraints that limit growth, IGF‐1 could help to relieve the trade‐off between these competing body size parameters. 相似文献
11.
Maria Yli‐Renko Outi Vesakoski Jenni E. Pettay 《Ethology : formerly Zeitschrift fur Tierpsychologie》2015,121(2):135-143
We studied the fitness effects of animal personality by measuring activity and its relation to survival in the marine isopod Idotea balthica. We asked (1) whether activity could be considered to be a personality trait, (2) whether this trait is connected to survival, and (3) whether personality and survival exhibit sex differences. We found that activity fulfilled the criteria of personality as individuals had consistent between‐individual differences over time and across situations. Consistent individual differences in activity were associated with fitness as the survival probability of active individuals was lower, but this did not depend on sex. Our results demonstrate that personality exists in I. balthica and support recent suggestions that the association between personality and life‐history traits is a central component in mediating animal personality. 相似文献
12.
A negative, genetic correlation between the total number and average size of progeny is a classical life‐history trade‐off that can greatly affect the fitness of organisms in their natural environments. This trade‐off has been investigated for animals and for sexually reproducing plants. However, evidence for a genetical size‐number trade‐off for clonal progeny in plants is still scarce. This study provides experimental evidence for such a trade‐off in the stoloniferous herb Potentilla reptans, and it studies phenotypic plasticity to light availability for the involved traits. Genotypes of P. reptans were collected from distinctively different environments, clonally replicated and exposed to high light and to shaded conditions. We found a significant negative correlation between the average size and the total number of offspring across genotypes for both light environments. Shading reduced ramet numbers, but hardly affected average ramet size. 相似文献
13.
Josefa Bleu Anne Loison Carole Toïgo 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):516-521
Life‐history theory predicts trade‐offs in energy allocation between different life‐history traits when resources are limited, i.e. certain traits should be negatively correlated. However, individuals differ in their ability to acquire resources, which can lead to positive correlations between traits at the population level. Here, we investigated the consequences of the allocation in horn growth and body mass on survival in a bovid (Rupicapra rupicapra) with capture‐mark re‐sighting data on 161 females. In female ungulates, body mass often covaries positively with demographic performance and the few studies on horn size suggest that this trait could be a signal of individual quality. Thus, we expected to measure positive correlations between the allocation in these traits and female survival. However, body mass was not correlated to female survival and there was only a negative, though marginal, effect of horn growth. Hence, it seems that the allocation in growth is not an indicator of female quality. Future studies could investigate the importance of growth on female reproduction to evaluate its effect on lifetime reproductive success. Moreover, it is important to confirm in other populations our result that suggests a cost of the allocation in horn growth to better understand the presence of horns in female bovids. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 516–521. 相似文献
14.
Duncan AB Fellous S Kaltz O 《Evolution; international journal of organic evolution》2011,65(12):3462-3474
Evolutionary costs of parasite resistance arise if genes conferring resistance reduce fitness in the absence of parasites. Thus, parasite-mediated selection may lead to increased resistance and a correlated decrease in fitness, whereas relaxed parasite-mediated selection may lead to reverse evolution of increased fitness and a correlated decrease in resistance. We tested this idea in experimental populations of the protozoan Paramecium caudatum and the parasitic bacterium Holospora undulata. After eight years, resistance to infection and asexual reproduction were compared among paramecia from (1) "infected" populations, (2) uninfected "naive" populations, and (3) previously infected, parasite-free "recovered" populations. Paramecia from "infected" populations were more resistant (+12%), but had lower reproduction (-15%) than "naive" paramecia, indicating an evolutionary trade-off between resistance and fitness. Recovered populations showed similar reproduction to naive populations; however, resistance of recently (<3 years) recovered populations was similar to paramecia from infected populations, whereas longer (>3 years) recovered populations were as susceptible as naive populations. This suggests a weak, convex trade-off between resistance and fitness, allowing recovery of fitness, without complete loss of resistance, favoring the maintenance of a generalist strategy of intermediate fitness and resistance. Our results indicate that (co)evolution with parasites can leave a genetic signature in disease-free populations. 相似文献
15.
David Berger Erik Postma Wolf U. Blanckenhorn Richard J. Walters 《Evolution; international journal of organic evolution》2013,67(8):2385-2399
Although the potential to adapt to warmer climate is constrained by genetic trade‐offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade‐offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region‐specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade‐offs in natural environments. 相似文献
16.
Algae hold promise as a source of biofuel. Yet, the manner in which algae are most efficiently propagated and harvested is different from that used in traditional agriculture. In theory, algae can be grown in continuous culture and harvested frequently to maintain high yields with a short turnaround time. However, the maintenance of the population in a state of continuous growth will likely impose selection for fast growth, possibly opposing the maintenance of lipid stores desirable for fuel. Any harvesting that removes a subset of the population and leaves the survivors to establish the next generation may quickly select traits that escape harvesting. An understanding of these problems should help identify methods for retarding the evolution and enhancing biofuel production. 相似文献
17.
Joanna Sudyka 《BioEssays : news and reviews in molecular, cellular and developmental biology》2019,41(11)
Reproduction, a basic property of biological life, entails costs for an organism, ultimately detectable as reduction in survival prospects. Telomeres are an excellent candidate biomarker for explaining these reproductive costs, because their shortening correlates with increased mortality risk. For similar reasons, telomeres are perceived as biomarkers of individual “quality.” The relationship between reproduction and telomere dynamics is reviewed, emphasizing that cost and quality perspectives, commonly presented in isolation, should be integrated. While a majority of correlative studies have confirmed the relationship between telomere dynamics and various reproductive outputs, only limited experimental support exists showing that reproduction causes telomeres to shorten. A shift of focus to experimental manipulations of reproductive effort/telomere dynamics is crucial. However, the observation of survival reduction in response to these manipulations is essential for establishing telomeres as genuine biomarkers, allowing to unravel trade‐offs related to reproduction. 相似文献
18.
As a result of increased habitat fragmentation in anthropogenic landscapes, flying insects may be required to travel over larger distances in search of resources such as suitable host plants for oviposition. The oögenesis–flight syndrome hypothesis predicts that physiological constraints caused by an overlap in the resources used by thoracic muscles during flight and during oögenesis (e.g. carbohydrates, lipids and water) result in a resource trade‐off, with any resources used during flight no longer available for reproduction. Increased flight costs could therefore potentially result in a decrease in maternal provisioning of eggs. In the present study, the speckled wood butterfly Pararge aegeria (L.) is used to investigate whether increased flight during oviposition results in changes in maternal investment in eggs and whether this contributes to variation in the development of offspring in subsequent life stages. Forcing females to fly during oviposition directly influences egg size and embryonic development time, and indirectly influences (through changes in egg size) egg hatching success and larval development time. These effects are mediated through ‘selfish maternal effects’, with mothers forced to fly maximizing their fecundity at the expense of investment to individual egg size. The present study demonstrates that a change in maternal provisioning as a result of increased flight during oviposition has the potential to exert nongenetic cross‐generational fitness effects in P. aegeria. This could have important consequences for population dynamics, particularly in fragmented anthropogenic landscapes. 相似文献
19.
Stephanie S. Porter Kevin J. Rice 《Evolution; international journal of organic evolution》2013,67(2):599-608
Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotype's nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria. 相似文献
20.
JEFF S. WESNER ERIC J. BILLMAN MARK C. BELK 《Biological journal of the Linnean Society. Linnean Society of London》2011,104(2):386-392
Predation can drive morphological divergence in prey populations, although examples of divergent selection are typically limited to nonreproductive individuals. In livebearing females, shape often changes drastically during pregnancy, reducing speed and mobility and enhancing susceptibility to predation. In the present study, we document morphological divergence among populations of nonreproductive female livebearing fish (Brachyrhaphis rhabdophora) in predator and nonpredator environments. We then test the hypothesis that shape differences among nonreproductive females are maintained among reproductive females between predator and nonpredator environments. Nonreproductive females in predator environments had larger caudal regions and more fusiform bodies than females in nonpredator environments; traits that are associated with burst speed in fish. Shape differences were maintained in reproductive females, although the magnitude of this difference declined relative to nonreproductive females, suggesting morphological convergence during pregnancy. Phenotypic change vector analysis revealed that females in predator environments became more similar to females in nonpredator environments in the transition from nonreproductive to reproductive. Furthermore, the level of reproductive allocation affected shape similarly between predator environments. These results suggest a life‐history constraint on morphology, in which predator‐driven morphological divergence among nonreproductive B. rhabdophora is not maintained at the same level during pregnancy. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 386–392. 相似文献