首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

2.
3.
Abstract Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle , divergent selection on wing color across an elevational gradient in response to the thermal environment has led to increasing wing melanization at higher elevations. Wing color is also a long-range signal used by males in mate searching. We conducted experiments to test whether sexual selection on wing melanization via male mate choice acts in the same direction as natural selection on mate signals due to the thermal environment. We performed controlled mate choice experiments in the field over an elevational range of 1500 meters using decoy butterflies with different melanization levels. Also, we obtained a more direct estimate of the relation between wing color and sexual selection by measuring mating success in wild-caught females. Both our experiments showed that wing melanization is an important determinant of female mating success in C. p. eriphyle . However, a lack of elevational variation in male mate preference prevents coevolution of mate signals and mate preference, as males at all elevations prefer less-melanized females. We suggest that this apparently maladaptive mate choice may be maintained by differences in detectability between the morphs or by preservation of species recognition.  相似文献   

4.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

5.
6.
Wing morphological variations are described here for the lycaenid butterfly Tongeia fischeri. A landmark‐based geometric morphometric approach based on wing venation of 197 male and 187 female butterflies collected in Japan was used to quantify wing size and shape variations between sexes and among populations. Sexual dimorphism in wing size and shape was detected. Females had significantly larger wings than males, while males showed a relatively elongated forewing with a longer apex and narrower wing tornus in comparison to females. Intraspecific variations in wing morphology among populations were revealed for the wing shape, but not wing size. Distinct wing shape differences were found in the vein intersections area around the distal part of the discal cell where median veins originated in the forewing and around the origin of the CU1 vein in the hindwing. In addition, phenotypic relationships inferred from wing shape variations grouped T. fischeri populations into three groups, reflecting the subspecies classification of the species. The spatial variability and phenotypic relationships between conspecific populations of T. fischeri detected here are generally in agreement with the previous molecular study based on mitochondrial and nuclear sequences, suggesting the presence of a phylogenetic signal in the wing shape of T. fischeri, and thus having taxonomic implications.  相似文献   

7.
In the genus Panorpa (Insecta: Mecoptera), also known as scorpionflies, premating behavior includes repeated sequences of slow wing movements (waving, fanning, flagging) which are accompanied by rapid abdomen vibrations that generate substantial substrate‐borne sound. It is still unknown whether wing patterns or vibratory signals contain information about species identity, sex and/or the quality of potential mating partners. Besides species‐specific pheromones, these multimodal signals may be of particular importance for the maintenance of reproductive isolation in sympatrically occurring scorpionfly species. Here, we analyzed phyologenetic relationships among, and the pattern of forewings as well as substrate‐borne sound in 3 different sympatric Central‐European scorpionfly species (P. communis, P. germanica, and P. alpina). Divergence time estimates, based on 879 bp of the mitochondrial COI gene, indicate longstanding separate evolutionary histories for the studied Panorpa species. Morphological analysis revealed that wing length as an indicator of body size increased in the following order: P. alpina < P. germanica < P. communis. Individuals can be assigned to the correct species and sex with high accuracy just by evaluation of the number of dark spots and the proportion of wing pigmentation. Despite high variability of interpulse period at an individual level, across species analysis revealed a positive correlation of average interpulse period as well as mean signal amplitude with forewing length. These results suggest wing patterns, but less likely vibratory signals, to contain information about species identity. Furthermore, receivers may be able to estimate the body size of a signaler solely on the basis of substrate‐borne sound.  相似文献   

8.
Wing pattern is very important in the taxonomy of the genus Culicoides. To date no quantitative method has been described permitting the inclusion of wing pattern characters with traditional morphometric characters in multivariate studies.
Two alternative methods for quantifying wing pattern are developed here. The first superimposes a grid onto a wing and the 420 'characters' generated are scanned for pigmentation. A second method recognizes 13 pattern elements from a sequentially arranged series of wings. The latter method was considered superior for several reasons: it uses logically acceptable characters, reduces character redundancy and allows easier and faster coding.
Empirical multivariate studies show the pattern element method to be of taxonomic value in the difficult C. pulicaris group, and to have considerable potential for use in this and other groups of Diptera with patterned wings.  相似文献   

9.
The African butterfly, Bicyclus anynana, normally possesses circular eyespots on its wings. Artificial selection lines, which express ellipsoidal eyespots on the dorsal surface of the forewing, were used to investigate correlated changes in wing shape. Morphometric analysis of linear wing measurements and wing scale counts provided evidence that eyespot shape was correlated with localised shape changes in the corresponding wing-cell, with overall shape changes in the wing, and with the density/arrangement of scales around the eyespot area.  相似文献   

10.
Visual signaling in animals can serve many uses, including predator deterrence and mate attraction. In many cases, signals used to advertise unprofitability to predators are also used for intraspecific communication. Although aposematism and mate choice are significant forces driving the evolution of many animal phenotypes, the interplay between relevant visual signals remains little explored. Here, we address this question in the aposematic passion‐vine butterfly Heliconius erato by using color‐ and pattern‐manipulated models to test the contributions of different visual features to both mate choice and warning coloration. We found that the relative effectiveness of a model at escaping predation was correlated with its effectiveness at inducing mating behavior, and in both cases wing color was more predictive of presumptive fitness benefits than wing pattern. Overall, however, a combination of the natural (local) color and pattern was most successful for both predator deterrence and mate attraction. By exploring the relative contributions of color versus pattern composition in predation and mate preference studies, we have shown how both natural and sexual selection may work in parallel to drive the evolution of specific animal color patterns.  相似文献   

11.
Abstract.
  • 1 For three successive years Bicyclus butterflies were caught on a daily basis at a field site in Malawi.
  • 2 Over 5000 butterflies, belonging to five species, were captured. Eight characters describing their plastic wing pattern were measured and analyzed.
  • 3 Broadly speaking, the plasticity is similar for all species, with the wet season forms having conspicuous wing markings (e.g. eyespots), and dry season forms lacking these markings.
  • 4 However, at a more detailed level, each species has its own specific form of plasticity with especially clear differences in the number of intermediate forms.
  • 5 Females generally show a higher degree of plasticity than males.
  • 6 The relative frequencies of intermediate forms and the difference between the sexes are associated with differences between the species in their preference for more open habitats or forests.
  • 7 The species with the most divergent plasticity is also ecologically and phylogenetically comparatively distant from the others.
  相似文献   

12.
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force.  相似文献   

13.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

14.
This study was designed to measure the degree of correlation between vein formation and the specification of campaniform sensillae positions in the wing of Drosophila melanogaster. The campaniform sensillae are sensory organs placed at various locations on the wing. Those on the third longitudinal vein (L3) were the focus of this analysis. The system of polygenic modifiers of vein length is comparatively simple, as shown in whole chromosome assays of selected lines. This variability provides a sensitive method of altering vein-forming ability and of assessing correlated changes in other parts of the vein pattern. In selection lines of veinlet, sensillae were displaced toward the base of the wing as vein length decreased by distal loss of vein material. Changes in the amount of vein were, however, not directly proportional to changes in sensillae positions. The more distal sensillae were shifted the largest amount. In the mutant tilt, in which reduced L3 vein-forming competence results in subterminal gaps, distal campaniform sensillae were almost completely eliminated. The remaining sensillae were shifted toward the base of the wing where vein formation is normal. The placement of sensillae therefore appears to be sensitive to the same underlying determinants involved in vein-forming competence.  相似文献   

15.
ABSTRACT. Contact chemoreception is important in female recognition by Teleogryllus oceanicus (Le Guillou) males. Antennal contact of female conspecifics, body regions, detached antennae and conditioned substrate elicited mostly courtship responses including courtship songs. Aggressive acts were produced only in response to male conspecifics. Male body regions, detached antennae and conditioned substrate elicited very few courtship or aggressive acts and no songs. This suggests that one or several communication modes, in addition to chemical communication, are necessary to elicit aggressive responses. Acheta domesticus (L.) males cannot rely upon chemical cues for recognition of either sex. Responses to conspecifics suggest that A. domesticus males produce aggressive acts immediately after antennal contact with either sex. Aggressive response to males usually persists, but response to females often switches to courtship. Responses to body regions, detached antennae, and conditioned substrate were few, with courtship and aggressive responses elicited by both male- and female-generated stimuli. The importance of contact chemoreception in cricket communication is suggested by (1) failure of hexane-washed antennae to elicit aggressive or courtship acts, and (2) males spending more time in contact with body regions and conditioned substrates than with corresponding controls. Lack of response to male or female odour-laden air suggests that chemical signals are used by males only if directly contacted. Chemical and other signals supplement the obvious use of acoustic signals for intra- and intersexual communication in these crickets. The importance of multimodal communication in sex recognition is discussed.  相似文献   

16.
Diversification of phytophagous insects is often associated with changes in the use of host taxa and host parts. We focus on a group of newly discovered Neotropical tephritids in the genus Blepharoneura , and report the discovery of an extraordinary number of sympatric, morphologically cryptic species, all feeding as larvae on calyces of flowers of a single functionally dioecious and highly sexually dimorphic host species ( Gurania spinulosa ) in eastern Ecuador. Molecular analyses of the mitochondrial cytochrome oxidase-I gene from flies reared from flowers of G. spinulosa reveal six distinct haplotype groups that differ by 7.2–10.1% bp (uncorrected pairwise distances; N  = 624 bp). Haplotype groups correspond to six distinct and well-supported clades. Members of five clades specialize on the calyces of flowers of a particular sex: three clades comprise male flower specialists; two clades comprise female flower specialists; the sixth clade comprises generalists reared from male and female flowers. The six clades occupy significantly different morphological spaces defined by wing pigmentation patterns; however, diagnostic morphological characters were not discovered. Behavioural observations suggest specific courtship behaviours may play a role in maintaining reproductive isolation among sympatric species. Journal compilation  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 779–797. No claim to original US government works.  相似文献   

17.
Nocturnal frog species rely extensively on vocalization for reproduction. But recent studies provide evidence for an important, though long overlooked, role of visual communication. In many species, calling males exhibit a conspicuous pulsing vocal sac, a signal bearing visually important dynamic components. Here, we investigate female preference for male vocal sac coloration—a question hitherto unexplored—and male colour pattern in the European tree frog (Hyla arborea). Under nocturnal conditions, we conducted two-choice experiments involving video playbacks of calling males with identical calls and showing various naturally encountered colour signals, differing in their chromatic and brightness components. We adjusted video colours to match the frogs'' visual perception, a crucial aspect not considered in previous experiments. Females prefer males with a colourful sac and a pronounced flank stripe. Both signals probably enhance male conspicuousness and facilitate detection and localization by females. This study provides the first experimental evidence of a preference for specific vocal sac spectral properties in a nocturnal anuran species. Vocal sac coloration is based on carotenoids and may convey information about male quality worthwhile for females to assess. The informative content of the flank stripe remains to be demonstrated.  相似文献   

18.
Populations of the Tour species of Chloriona commonly found in the Netherlands C dorsata, C. glaucescens, C. smaragdula and C. vasconica –were cultured in the laboratory on Phragmites australis, their exclusive host plant in the field. The low frequency substrate-transmitted signals produced during the calling phase of mating behaviour were digitally analysed for the males and females of each species. Variables selected to cover most aspects of the call were measured, and variation was quantified within species and statistically tested among species using univariate and multivariate techniques. The calls of the males were more complex in structure than those of the females, with two different phase patterns recognized, and were species-specific. C. glaucescens and C vasconica were also separated on variables of the female call, but C dorsata and C. smaragdula completely overlapped. No significant differences were found between the calls of the long-winged and.short-winged female morphs of C. smaragdula. A possible role for variation in calling signals, and responses to them, in the evolution and maintenance of reproductive isolation in Chlonona is discussed.  相似文献   

19.
Male soapberry bugs (Jadera haematoloma)face severe mating competition at the northern edge of their range due to male-biased adult sex ratios. Copulations lasting up to 11 days may serve a mate guarding function (encompassing four or more ovipositions), but copulation duration is highly variable, with some pairings lasting as little as 10 min. Data were gathered to describe factors that influence the reproductive costs and benefits of prolonged copulation. Estimated copulation durations (mean ± SD) were 20 ± 23 h in the lab and 50 ± 8 h in the field and were only weakly affected by sex ratio. Females mated for 5 min produced as many fertile eggs as those mated for 600 min laid; they became depleted of fertile sperm after about 25 days. In twicemated females, the first male's paternity was reduced by about 60%, and all females (N = 13) whose mates were removed experimentally mated again within an average of 6 min. The outcome of sperm competition on a perclutch basis was not highly predictable. The possibility of increased sperm displacement in longer copulations was not tested. Males often guarded females during oviposition and successfully defended them from intruding single males by recopulating. Such intrusions occurred in the majority of oviposition attempts observed in nature. Even though most females mated promiscuously, in a focal aggregation with a mean sex ratio of 2.2 ± 0.4 males/female, the interval between matings by males was commonly several days. Males appeared to respond facultatively to several aspects of the distribution and availability of females. The intensities of mating competition and sperm competition indicate that monogamous mate guarding should be favored over nonguarding in nature. Unpredicted brief. pairings may result from assessment by males of female reproductive value or of their own physical condition, or from female resistance.  相似文献   

20.
We studied the wing morphology, echolocation calls, foraging behaviour and flight speed of Tylonycteris pachypus and Tylonycteris robustula in Longzhou County, South China during the summer (June–August) of 2005. The wingspan, wing loading and aspect ratio of the two species were relatively low, and those of T. pachypus were lower compared with T. robustula . The echolocation calls of T. pachypus and T. robustula consist of a broadband frequency modulated (FM) sweep followed by a short narrowband FM sweep. The dominant frequency of calls of T. pachypus was 65.1 kHz, whereas that of T. robustula was 57.7 kHz. The call frequencies (including highest frequency of the call, lowest frequency of the call and frequency of the call that contained most energy) of T. pachypus were higher than those of T. robustula , and the pulse duration of the former was longer than that of the latter. The inter-pulse interval and bandwidth of the calls were not significantly different between the two species. Tylonycteris pachypus foraged in more complex environments than T. robustula , although the two species were both netted in edge habitats (around trees or houses), along pathways and in the tops of trees. Tylonycteris pachypus flew slower (straight level flight speed, 4.3 m s−1) than T. robustula (straight level flight speed, 4.8 m s−1). We discuss the relationship between wing morphology, echolocation calls, foraging behaviour and flight speed, and demonstrate resource partitioning between these two species in terms of morphological and behavioural factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号