首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two phenomena are integral to the foraging behaviour of leaf‐cutting ants in the genus Atta: hitchhiking (where small ants ride on leaf fragments carried by larger workers) and rhythmic foraging (where foraging activity shows marked fluctuations over time). While parasitism by phorid flies has been implicated in eliciting both behaviours, recent research suggests fungal contaminants and the need to procure sap also play a key role in eliciting hitchhiking. For wild colonies of Atta cephalotes L. (Hymenoptera: Formicidae), we investigated the extent to which hitchhiking frequency varied in space and time and the foraging performance of day‐time and night‐time workers. Day‐time foragers were considerably smaller than nocturnal foragers, a trend previously described as a response to diurnal phorids. Despite their smaller size, day‐time foragers had higher foraging performance, perhaps as a consequence of decreased trail congestion. Larger leaf‐carriers were more likely to carry hitchhikers and hitchhiking frequency was higher at night, an observation that conflicts with the parasitoid defence hypothesis, but not with the leaf sap and fungal defence hypotheses. Hitchhikers constitute a major proportion (typically 12%) of the loads carried by workers, and have three times the effect of leaf fragment mass on forager velocity. However, they reduced energetic efficiency by only 2.6% and provisioning rate by 5.9%. Our results provide partial support for the parasitoid defence hypothesis, but suggest that both the risks of parasitism and the opportunity‐cost to foraging associated with carrying hitchhikers may be low.  相似文献   

2.
In leaf-cutter ants, small workers often ride or “hitchhike” on leaf fragments carried back to the nest by larger foragers. There are several possible explanations for this unusual behaviour, the main ones being defence against phorid flies, defence against fungal contaminants, and leaf sap obtention. Here we tested these three hypotheses using standardized paired assays with laboratory colonies of Atta sexdens and field colonies of Atta laevigata. For both ant species, the proportion of fragments with hitchhikers increased significantly in response to the presence of fungal contaminants and to leaf sap. The proportion of fragments with hitchhikers also increased in the presence of phorid flies (Neodohrniphora erthali), but only for A. sexdens. In addition, hitchhiker position varied with the treatment applied. In the presence of phorids, hitchhikers frequently moved around the fragment; in the presence of leaf sap, hitchhikers frequently stood at the edge of the fragments, whereas when fragments were inoculated with fungal contaminants, hitchhikers were more often in the centre of the fragment, where the contamination was greatest. Our results strongly suggest that hitchhiking behaviour in Atta has multiple functions. Such behaviour probably evolved as a mechanism of defence, both against potential contaminants of the symbiotic fungus and against ant parasitoids. The obtention of leaf sap by minims seems to be a secondary and probably opportunistic function of this behaviour. Received 7 November 2005; revised 16 March 2006; accepted 6 April 2006.  相似文献   

3.
During foraging, leaf-cutting ant workers of different size classes perform various tasks along foraging trails. Commonly, small workers called hitchhikers climb on leaf fragments imposing an extra transport cost, so their presence is thought to reduce the individual foraging performance. There are four main hypotheses which may explain the occurrence of hitchhikers and a different behavioral act related to their role can be predicted for each. Hitchhiker behavior was observed considering these hypotheses and the effect of the hitchhikers on the walking speed and transport rate of foragers was evaluated. The behavioral registers were obtained from 1371 hitchhikers on foraging trails of Acromyrmex subterraneus subterraneus nests in the field. To verify the influence of hitchhikers on walking speed and transport rate, 239 foragers with hitchhikers and 250 foragers transporting only leaf fragments were analyzed. The walking speed, burden and transport rate of each forager were calculated. Data indicated not only that hitchhikers are vigilant but that they remain motionless on the leaf fragment probably in order to reduce the impact of their presence for the loaded forager. The impact of their presence is verified through walking speed reduction but as they ride preferentially on larger workers who transport larger leaf fragments, there are no losses in the individual transport rate. The transporter selection made by the hitchhiker ensures at the same time enhanced protection against phorid parasitoids and the maintenance of the leaf transport rate.  相似文献   

4.
Aim Because of the obligatory relationship between endoparasitoids and their hosts, we presume that hosts exert strong selection pressure on parasitoids. One prediction is a positive relationship between host diversity and parasitoid richness. This relationship could be the product of resource availability which could lead to more opportunities for speciation, or could represent shared responses to the environment by both groups. Location Argentina and Paraguay. Methods We sampled a 1800‐km transect to test for a correlation between the richness of leaf‐cutting ant hosts and their phorid parasitoids. Regression models were used to assess if host and environmental variables could explain phorid species richness at nest, hectare and locality spatial scales. We used canonical correspondence analysis (CCA) to explore if there were similar responses of phorid species to particular host and environmental variables at different spatial scales, and partial CCA to separate the relative importance of both groups of variables. Results Phorid richness was positively correlated with host richness. Host richness/abundance accounted for 20–53% of the variation in parasitoid richness at the hectare and locality scales of analysis, with most of the variation accounted for by ant abundance. We were not able to assess the prediction at the nest scale as only one phorid species was found at most nests. Climatic variables did not explain phorid species richness once host variables were in the models. Partial CCA showed that host‐related variables accounted for most of the variance associated with phorid species ordination at the nest and hectare scales, but not at the largest grain, the locality, where climatic variables were more important. However, most phorid species did not show particular positions along the climatic gradient. Main conclusions The association between parasitoid richness and host richness and abundance, and the overall weak associations with environmental variables, suggest that these host variables are key factors influencing parasitoid speciation.  相似文献   

5.
Females of the parasitic phorid Neodohrniphora sp. were collected in the field and released singly inside an observation chamber placed between a laboratory colony of Atta sexdens (L.) and its foraging arena. The number and speed of loaded and unloaded ants returning to the nest, the weight of foragers and their loads, the number of leaf fragments abandoned by ants, and the number of small workers 'hitchhiking' on leaf fragments were measured before phorids were released, while they were in the observation chamber, and after they were removed. Relatively few ants were attacked by Neodohrniphora sp., but the presence of flies prompted outbound ants to return to the nest and caused a significant reduction on the number and mass of foragers. Additionally, the weight of leaf fragments transported by ants was reduced and the number of abandoned fragments increased in response to Neodohrniphora sp. Presence of the parasitoid caused no significant changes in the number of hitchhiking ants. The regular ants' traffic was resumed after phorids were removed, but foraging activity remained below normal for up to three hours. In the field A. sexdens forages mostly at night, but colonies undergo periods of diurnal foraging during which ants are subject to parasitism from several species of phorid flies. Considering that daytime foraging may be necessary for nutritional or metabolical needs, phorids may have a significant impact on their hosts by altering their foraging behavior regardless of the numerical values of parasitism.  相似文献   

6.
1. The ecologically dominant leaf‐cutting ants exhibit one of the most complex forms of morphological caste‐based division of labour in order to efficiently conduct tasks, ranging from harvesting fresh leaf material to caring for the vulnerable fungal crop they farm as food. While much of their division of labour is well known, the role of the smallest workers on foraging trails is puzzling. Frequently these minim workers hitchhike on leaf fragments and it has been suggested that they may act to reduce the microbial contamination of leaf material before they enter the nest. Here we investigated this potentially important role of minims with field colonies of Atta colombica. 2. We experimentally increased the microbial load of leaf fragments and found that this resulted in minims hitchhiking on leaf fragments for longer. Furthermore, we show that leaves naturally have a significant microbial load and that the presence of hitchhikers reduces the microbial load of both experimentally manipulated and natural leaf fragments. 3. Intriguingly, the microbial load of leaves high in the canopy where ants were foraging was much lower than closer to the ground where the ants avoided cutting leaves. This suggests that the often perplexing foraging patterns of leaf‐cutting ants may in part be explained by the ants avoiding leaves that are more heavily contaminated with microbes. 4. The removal of microbial contaminants is therefore an important role of hitchhiking minim workers in natural colonies of Atta leaf‐cutting ants, although other tasks such as trail maintenance and defence also explain their occurrence on trails.  相似文献   

7.
Summary. The parasitic phorid Myrmosicarius grandicornis Borgmeier is commonly found around nest entrances of the leaf-cutting ant Atta sexdens (L.) in Brazil, but there is no information about the importance of this fly for A. sexdens. We evaluated the parasitic capability of female M. grandicornis collected in the field and released in laboratory nests of A. sexdens and compared ants' foraging rhythm before and after M. grandicornis were released. We also determined biological characteristics of the parasitoid. Presence of M. grandicornis elicited foragers to abandon their loads and return to the nest, an effect previously described for the phorid Neodohrniphora sp., which is a more abundant A. sexdens parasitoid. Both phorid species occur at the same foraging trails during part of the year and attack ants of different size classes. Therefore, they may have a combined effect on the reduction of A. sexdens foraging. Myrmosicarius grandicornis pupariated inside hosts' head capsules, which are detached from their bodies and deposited in the nest's refuse pile. Adults emerged through the hosts' mouth cavity about a month after oviposition. The characteristics of M. grandicornis biology suggest that this parasitoid completes its development inside A. sexdens nests.  相似文献   

8.
Resource segregation by species is a cornerstone ecological concept that may result from several processes such as interspecific competition, and can help structuring communities, in particular parasitoid communities. Phorid parasitoid flies that use ants as hosts usually employ one host per individual parasitoid, and thus the pressure for segregating the host resource should be high. At a particular community, these parasitoids might segregate resources by temporal differences in activity patterns, using different host species or nests from those available. Even if parasitoid species coexist on the same nest, they can take advantage of worker polymorphism and task division, searching for ants performing different tasks at different microsites of the same nest. Here we evaluated the segregation of parasitoid species in these hypothesized axes using leaf-cutting ant phorid parasitoids as a model system. We analyzed temporal data collected at two localities with contrasting host species richness; and compared parasitoid co-occurrence at the different niche axis. For most of the hypothesized niche axes tested we found either no departures from random expectations or significantly more niche overlap than expected by chance, ruling out the existence of biologically relevant host resource segregation in this system. However, there was evidence of segregation for some species, since one parasitoid species was only found in winter and another species showed a negative correlation of its abundance over nests with other two species. Furthermore, we found that several species were flexible in host use; Atta phorids varied in average host sizes preferred, whereas Acromyrmex phorids that were generalists were able to use different host species or microsites for host location. From an applied perspective, these results are encouraging when selecting species for the control of leaf-cutting ants because parasitoids coexistence seems to be unaffected by their overlap in niche dimensions.  相似文献   

9.
Habitat fragmentation can have a high impact on parasitoid–ant interactions. Phorid flies are among the most important groups of natural enemies of leaf‐cutting ants. We studied the effects of loss in forest cover upon phorids of the leaf‐cutting ant Acromyrmex nigerSmith (Hymenoptera: Formicidae: Attini) in a fragmented area in the Southeastern Atlantic Forest, Brazil. We sampled 10 forest fragments, five large (>75 ha) and five small (<20 ha), as well as three areas of continuous forest (>1 000 ha). We marked 1–5 colonies of A. niger in the interior of each forest location. At each nest, we collected all of the phorids in interaction with the worker ants for a period of 15 min. We then collected ca. 200 worker ants, which we maintained in the laboratory for rearing phorids from them. We identified three phorid genera – Apocephalus, Myrmosicarius, and Neodohrniphora – which we both observed in the field and reared in the laboratory. The abundance and parasitism percentage were significantly greater in continuous forest sites than in forest fragments, whereas there were no significant differences between fragments of different sizes. These results provide further evidence for the effects of habitat size on the phorid‐Acromyrmex system in a tropical rain forest, based on the abundance of parasitoids both as adults in the field and as reared immature phorids in the laboratory.  相似文献   

10.
Predation involves costs and benefits, so predators should employ tactics that reduce their risk of injury or death and that increase their success at capturing prey. One potential way that predators could decrease risk and increase benefits is by attacking prey at night when risks may be reduced and prey more vulnerable. Because some snakes are facultatively nocturnal and prey on bird nests during the day and night, they are ideal for assessing the costs and benefits of diurnal vs. nocturnal predation. We used automated radiotelemetry and cameras to investigate predation on nesting birds by two species of snakes, one diurnal and the other facultatively nocturnal. We predicted that snakes preying on nests at night should experience less parental nest defence and capture more adults and nestlings. Rat snakes (Pantherophis obsoletus) were relatively inactive at night (23–36% activity) but nearly always preyed on nests after dark (80% of nest predations). Conversely, racers (Coluber constrictor) were exclusively diurnal and preyed on nests during the times of day they were most active. These results are consistent with rat snakes strategically using their capacity for facultative nocturnal activity to prey on nests at night. The likely benefit is reduced nest defence because birds defended their nests less vigourously at night. Consistent with nocturnal predation being safer, rat snake predation events lasted three times longer at night than during the day (26 vs. 8 min). Nocturnal nest predation did not make nests more profitable by increasing the likelihood of capturing adults or removing premature fledging of nestlings. The disconnect between rat snake activity and timing of nest predation seems most consistent with rat snakes locating prey during the day using visual cues but waiting until dark to prey on nests when predation is safer, although designing a direct test of this hypothesis will be challenging.  相似文献   

11.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

12.
1. Parasitoid–host interactions are important components of ecological communities. Although parasitoid–host interactions are strongly shaped by evolutionary history, the abundance of both the parasitoid and the host may have a role in determining the nature of the interaction once phylogenetic relationships are considered. 2. Leafcutter ants are hosts of phorid parasitoids and represent a well‐defined and specialised module within a larger network of ant–symbiont interactions. A low specificity host taxa and a positive association between host abundance and parasitoid interaction frequency were expected due to the close phylogenetic relatedness of the hosts. 3. The interactions among all species of leafcutter ants and their parasitoids were quantified in two localities with different species richness. This study also characterised the spatial‐temporal variability of these interactions, determined the patterns of parasitoid specificity and host selection, and tested for an association between host abundance and parasitoid interaction frequency. 4. Contrary to expectation, most parasitoid species were highly specialised and interaction frequency for parasitoid species was not related to host abundance. All host ant species were attacked by more than one phorid species. Some phorid species used more than one host species and showed preference for the same species over space and time, suggesting that there are physiological and/or behavioural restrictions on host use. 5. These results show that there is a tendency for specialisation even when hosts are highly similar in their ecology. From a biological control perspective, these parasitoids may be effective candidates, due to the high specificity of some species and little host‐use variation through time.  相似文献   

13.
Incubation is an energetically costly parental task of breeding birds. Incubating parents respond to environmental variation and nest‐site features to adjust the balance between the time spent incubating (i.e. nest attentiveness) and foraging to supply their own needs. Non‐natural nesting substrates such as human buildings impose new environmental contexts that may affect time allocation of incubating birds but this topic remains little studied. Here, we tested whether nesting substrate type (buildings vs. trees) affects the temperature inside the incubation chamber (hereafter ‘nest temperature’) in the Pale‐breasted Thrush Turdus leucomelas, either during ‘day’ (with incubation recesses) or ‘night’ periods (representing uninterrupted female presence at the nest). We also tested whether nesting substrate type affects the incubation time budget using air temperature and the day of the incubation cycle as covariates. Nest temperature, when controlled for microhabitat temperature, was higher at night and in nests in buildings but did not differ between daytime and night for nests in buildings, indicating that buildings partially compensate for incubation recesses by females with regard to nest temperature stability. Females from nests placed in buildings exhibited lower nest attentiveness (the overall percentage of time spent incubating) and had longer bouts off the nest. Higher air temperatures were significantly correlated with shorter bouts on the nest and longer bouts off the nest, but without affecting nest attentiveness. We suggest that the longer bouts off the nest taken by females of nests in buildings is a consequence of higher nest temperatures promoted by man‐made structures around these nests. Use of buildings as nesting substrate may therefore increase parental fitness due to a relaxed incubation budget, and potentially drive the evolution of incubation behaviour in certain urban bird populations.  相似文献   

14.
This study examines the oviposition behavior of the phorid parasitoid Neodohrniphora curvinervisand the antiparasitoid defense behavior of its leafcutting ant host Atta cephalotes. N. curvinervisfemales are diurnal sit- and- wait parasitoids that attack only outbound foragers of head width 1.6 mm or greater. Females deposit a single egg through the foramen magnum of each host successfully parasitized. Pursuit of hosts is usually initiated when an outbound forager of acceptable size passes by a parasitoid perch site. Individual foragers defend themselves against pursuing parasitoids by outrunning them along the foraging trail or by standing their ground and fending them off with their legs,antennae, and mandibles. At the colony level, susceptible foragers are protected against parasitism by a shift in the forager size distribution toward smaller unsusceptible sizes during the day when parasitoids are active and toward larger sizes at night when parasitoids are inactive. The frequency of parasitism of susceptible foragers was 15%, which is more than five times the frequency found in another system involving the phorid parasitoid Apocephalus attophilusand the leafcutting ant host Atta colombica.We offer several possible explanations for such differences in the frequency of parasitism and also examine reasons for the high incidence of superparasitism (19%) observed in the system studied.  相似文献   

15.
We studied nest relocation in the ant Pheidole dentata, a common species in the southern US, by following colonies for 6 weeks. We correlated probability of relocation with several abiotic and biotic environmental factors, such as air temperature, humidity, leaf litter depth (LLD), nest type and presence of phorid fly parasitoids. Colonies moved often, on average every 16.2 days. By the end of our study, fewer than 5 % of colonies marked at the start remained in their original nests. Only 3.1 % of colonies returned to a previously used nest. The mean distance of relocation was 0.76 ± 0.73 m. Colonies nested in a variety of locations, such as in the ground, by tree trunks, under rocks and inside wood. Several factors affected probability of relocation. Higher LLD and vapor pressure deficit (VPD) increased probability of relocation. Probability of relocation varied by nest type, by plot and week of study. We found no evidence that surface cover or rain affected relocation behavior. Colonies appear to avoid nests that become dry by nesting against tree trunks. Phorid fly abundance correlated negatively with VPD, yet it had no effect on colonies’ likelihood of relocation. We discuss other implications of frequent nest relocations.  相似文献   

16.
1. Echthrodesis lamorali Masner, 1968 is the only known parasitoid of the eggs of the intertidal rocky shore spider Desis formidabilis O.P. Cambridge 1890 and is endemic to a small area of South Africa. 2. The abundance of spider nests and parasitoid presence were assessed in relation to their in‐ and between‐shore location at multiple sites within the distribution of E. lamorali along the Cape Peninsula (Western Cape, South Africa). 3. Desis formidabilis nests were more abundant in the mid‐shore zone than higher up or lower down the shore. Spider population sizes also differed between collection sites, with higher numbers recorded on the cooler western coast of the peninsula. 4. Evidence of parasitoid activity was recorded in 43.31% of the 127 nests and 13.85% of the 592 egg sacs they contained. 5. Where parasitoids gained entry to a spider egg sac, oviposition took place into all of the eggs present. 6. Incidence of wasp activity was positively correlated with spider nest concentration, not with height up the shore, suggesting that both the host and parasitoid are tolerant of salt‐water inundation. 7. These results should assist managers of the Table Mountain National Park, in which the full distribution of E. lamorali falls, to better understand this component of rocky shore community dynamics.  相似文献   

17.
The overall impact of the parasitoid Sphecophaga vesparum vesparum on invasive Vespula wasps in New Zealand native beech forest was evaluated by assessing the levels of parasitism achieved and the parasitoid’s effect at nest level and population level. The maximum proportion of nests parasitised was 17%, but there was no significant increase with time (r= 0.139; p = 0.115). However, there was an exponential reduction in the number of parasitoids produced per parasitised nest from a peak of 570 (SE = 143) parasitoids per nest in 1990, declining to only 15 (SE = 6) parasitoids per nest in 2004. Even when parasitoid density was high, the parasitoid had no detectable impact on the number of small cells or the total host nest size, but it halved the number of large (reproductive) cells produced. This may have resulted in fewer queens produced per parasitised nest. Wasp nest density was highly variable from year to year, but there was no evidence that the wasp population density at the parasitised site (Pelorus Bridge) had declined relative to the five sites where the parasitoid had not established. We conclude that the parasitoid is unlikely to have had any significant effect on wasp populations hitherto, nor is it likely to impact host populations in the future. We recommend other biological control programs adopt pre-release assessment of per capita impact as a way of identifying agents that are more likely to be successful and hence minimising economic and potential ecological costs of biocontrol.  相似文献   

18.
Incubating birds must balance the needs of their developing embryos with their own physiological needs, and many birds accomplish this by taking periodic breaks from incubation. Mallard (Anas platyrhynchos) and gadwall (Mareca strepera) hens typically take incubation recesses in the early morning and late afternoon, but recesses can also take place at night. We examined nocturnal incubation recess behavior for mallard and gadwall hens nesting in Suisun Marsh, California, USA, using iButton temperature dataloggers and continuous video monitoring at nests. Fourteen percent of all detected incubation recesses (N = 13,708) were nocturnal and took place on 20% of nest‐days (N = 8,668). Video monitoring showed that hens covered their eggs with down feathers when they initiated a nocturnal recess themselves as they would a diurnal recess, but they left the eggs uncovered in 94% of the nocturnal recesses in which predators appeared at nests. Thus, determining whether or not eggs were left uncovered during a recess can provide strong indication whether the recess was initiated by the hen (eggs covered) or a predator (eggs uncovered). Because nest temperature decreased more rapidly when eggs were left uncovered versus covered, we were able to characterize eggs during nocturnal incubation recesses as covered or uncovered using nest temperature data. Overall, we predicted that 75% of nocturnal recesses were hen‐initiated recesses (eggs covered) whereas 25% of nocturnal recesses were predator‐initiated recesses (eggs uncovered). Of the predator‐initiated nocturnal recesses, 56% were accompanied by evidence of depredation at the nest during the subsequent nest monitoring visit. Hen‐initiated nocturnal recesses began later in the night (closer to morning) and were shorter than predator‐initiated nocturnal recesses. Our results indicate that nocturnal incubation recesses occur regularly (14% of all recesses) and, similar to diurnal recesses, most nocturnal recesses (75%) are initiated by the hen rather than an approaching predator.  相似文献   

19.
Biparental incubation is a form of cooperation between parents, but it is not conflict‐free because parents trade off incubation against other activities (e.g. self‐maintenance, mating opportunities). How parents resolve such conflict and achieve cooperation remains unknown. To understand better the potential for conflict, cooperation and the constraints on incubation behaviour, investigation of the parents' behaviour, both during incubation and when they are off incubation‐duty, is necessary. Using a combination of automated incubation‐monitoring and radiotelemetry we simultaneously investigated the behaviours of both parents in the biparentally incubating Semipalmated Sandpiper Calidris pusilla, a shorebird breeding under continuous daylight in the high Arctic. Here, we describe the off‐nest behaviour of 32 off‐duty parents from 17 nests. Off‐duty parents roamed on average 224 m from their nest, implying that direct communication with the incubating partner is unlikely. On average, off‐duty parents spent only 59% of their time feeding. Off‐nest distance and behaviour (like previously reported incubation behaviour) differed between the sexes, and varied with time and weather. Males roamed less far from the nest and spent less time feeding than did females. At night, parents stayed closer to the nest and tended to spend less time feeding than during the day. Further exploratory analyses revealed that the time spent feeding increased over the incubation period, and that at night, but not during the day, off‐duty parents spent more time feeding under relatively windy conditions. Hence, under energetically stressful conditions, parents may be forced to feed more. Our results suggest that parents are likely to conflict over the favourable feeding times, i.e. over when to incubate (within a day or incubation period). Our study also indicates that Semipalmated Sandpiper parents do not continuously keep track of each other to optimize incubation scheduling and, hence, that the off‐duty parent's decision to remain closer to the nest drives the length of incubation bouts.  相似文献   

20.
Lloyd W. Morrison 《Oecologia》1999,120(1):113-122
Indirect effects, which occur when the impact of one species upon another requires the existence of an intermediary species, are apparently very common and may be of greater magnitude than direct effects. Behaviorally mediated indirect effects occur when one species affects the behavior of a second, which in turn affects how that species interacts with a third. I studied behaviorally mediated indirect effects on the mechanisms of competition in two congeneric fire ant species in the presence and absence of parasitoid phorid flies, which parasitized only one ant species. In observational and experimental field studies, the presence of native Texas phorid flies in the genus Pseudacteon decreased food retrieval by their host, Solenopsis geminata (F.), by as much as 50%. In the presence of phorid flies, many S. geminata workers assumed a stationary, curled defensive posture and did not forage. Although the phorid parasitoids had a relatively large effect on exploitative competition, there was no measurable effect on interference competition. Fierce interspecific aggression was observed between S. geminata and S. invicta Buren, and the presence of phorids had no effect on the outcome of these contests. The indirect effects of Pseudacteon parasitoids on Solenopsis fire ant resource retrieval appear to be larger than the direct effect of mortality. Some aspects of the foraging behavior of these Solenopsis species may be, in part, evolutionary adaptations to phorid parasitoid pressure. Because of the relatively large indirect effects, South American Pseudacteon phorids may be promising biocontrol agents of imported fire ants, S. invicta, in the USA. In a laboratory study, a single South American Pseudacteon female was able to significantly decrease food retrieval rates of a North American population of the imported fire ant, S. invicta. Received: 11 May 1998 / Accepted: 18 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号