共查询到20条相似文献,搜索用时 0 毫秒
1.
Rubn Nogueiras Oreste Gualillo J. Eduardo Caminos Felipe F. Casanueva Carlos Diguez 《Obesity (Silver Spring, Md.)》2003,11(3):408-414
Objective: Resistin was recently identified as a hormone secreted by adipocytes that is under hormonal and nutritional control. This hormone has been suggested to be the link between obesity and type 2 diabetes. The aim of this study was to assess the influence of gender, gonadal status, thyroid hormones, pregnancy, and food restriction on resistin mRNA levels in adipose tissue of rats. Research Methods and Procedures: We have determined resistin mRNA expression by Northern blot analysis in all experimental sets. Results: Resistin mRNA expression is influenced by age, with the highest hormone levels existing at 45 days after birth and decreasing thereafter. Resistin mRNA expression is higher in men than in women. Moreover, we studied the effect of orchidectomy and ovariectomy in rats of different ages and showed that gonadal hormones increase adipose tissue resistin mRNA expression in male rats. Resistin is also regulated by thyroid hormones; it is severely decreased in hyperthyroid rats. Our results clearly show that chronic food restriction (30% of ad libitum food intake) led to a decrease in adipose tissue mRNA levels in normal cycling female rats and pregnant rats. In pregnancy, resistin mRNA levels were enhanced particularly at midgestation. Discussion: Our observations indicate that resistin is influenced by gender, gonadal status, thyroid hormones, and pregnancy. These findings suggest that resistin could explain the decreased insulin sensitivity during puberty and could be the link between sex steroids and insulin sensitivity. Moreover, resistin could mediate the effect of thyroid hormones on insulin resistance and the state of insulin resistance present during pregnancy. 相似文献
2.
Sulay A. Tovar Luisa M. Seoane Jorge E. Caminos Rubn Nogueiras Felipe F. Casanueva Carlos Diguez 《Obesity (Silver Spring, Md.)》2004,12(12):1944-1950
Objective: Peptide YY (PYY) 3‐36 has recently been recognized as an important gut hormone that influences food intake. Peripheral injections of PYY 3‐36 in rats inhibit food intake in experimental animals as well as in lean and obese human subjects. This hormone has been suggested as an attractive therapeutic option for obesity. The aim of this study was to assess the influence of age, sex, thyroid status, growth hormone (GH), pregnancy, and food restriction on PYY levels in rat. Research Methods and Procedures: We determined plasma PYY levels in all experimental sets. Results: PYY levels were influenced by age, with the highest hormone levels achieved in early postnatal life (day 10) and decreasing thereafter. PYY levels were also dependent on thyroid hormone status being decreased in hyperthyroid rats. Exogenous GH administration led to a clear‐cut decrease in PYY levels in both normal and GH‐deficient rats. Acute food deprivation or chronic food restriction led to decreased PYY levels in virgin and pregnant rats. In pregnant rats with food available ad libitum, PYY levels were enhanced at late gestation. Discussion: Our observations indicate that PYY levels are influenced by age, thyroid hormones, and GH. These data indicate that PYY could be involved in the changes of food intake associated with these conditions. The PYY levels observed in acute and chronic food‐restricted rats indicate that, in situations of decreased energy intake, the lower PYY levels could serve to disinhibit central pathways and facilitate food intake. 相似文献
3.
《Animal : an international journal of animal bioscience》2015,9(11):1843-1851
The objective of this study was to investigate the effects of maternal protein or energy restriction on hormonal and metabolic status of pregnant goats during late gestation and their postnatal male kids. Forty-five pregnant goats were fed a control (CON), 40% protein-restricted (PR) or 40% energy-restricted (ER) diet from 90 days of gestation until parturition. Plasma of mothers (90, 125 and 145 days of gestation) and kids (6 weeks of age) were sampled to determine metabolites and hormones. Glucose concentration for pregnant goats subjected to PR or ER was less (P<0.001) than that of CON goats at 125 and 145 days of gestation. However, plasma nonesterified fatty acids concentration was greater (P<0.01) at 125 and 145 days for PR and ER than CON. Protein restriction increased (P<0.01) maternal cortisol concentration by 145 days of gestation, and ER decreased (P<0.01) maternal insulin concentration at 125 days of gestation. Moreover, maternal amino acid (AA) concentrations were affected by nutritional restriction, with greater (P<0.05) total AA (TAA) and nonessential AA (NEAA) for PR goats but less (P<0.05) TAA and NEAA for ER goats at 125 days of gestation. After 6 weeks of nutritional recovery, plasma concentrations of most metabolic and hormonal parameters in restricted kids were similar to CON kids, except for reduced (P<0.05) insulin concentration in ER, and reduced (P<0.05) Asp concentration in PR and ER kids. These results provide information on potential metabolic mechanisms responsible for fetal programming. 相似文献
4.
Chen-Yu Liao Brad A. Rikke Thomas E. Johnson Vivian Diaz James F. Nelson 《Aging cell》2010,9(1):92-95
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal. 相似文献
5.
肥胖抑制素(obestatin)是新近发现的一种与食欲刺激素有关的多肽(ghrelin-associated peptide,GAP),可以结合孤儿G蛋白GPR39受体,抑制摄食、胃肠功能和体重的增加,被认为是食欲刺激激素(ghrelin)的生物学拮抗剂或阴阳活性多肽.但最新研究认为,obestatin不能与GPR39受体特异性结合,也不能改变ghrelin所诱导的生物学效应.鉴于上述不同的研究报道,就其相关研究成果作一概述. 相似文献
6.
Paul J. Wellman P. Shane Clifford Juan A. Rodriguez Samuel Hughes Carla Di Francesco Sergio Melotto Michela Tessari Mauro Corsi Angelo Bifone Alessandro Gozzi 《Addiction biology》2012,17(5):908-919
Ghrelin (GHR) is an orexigenic gut peptide that interacts with brain ghrelin receptors (GHR‐Rs) to promote food intake. Recent research suggests that GHR acts as a modulator of motivated behavior, suggesting a direct influence of GHR on brain reinforcement circuits. In the present studies, we investigated the role of GHR and GHR‐Rs in brain reinforcement function. Pharmacological magnetic resonance imaging was used to spatially resolve the functional activation produced by systemic administration of an orexigenic GHR dose. The imaging data revealed a focal activation of a network of subcortical structures that comprise brain reinforcement circuits—ventral tegmental area, lateral hypothalamus and nucleus accumbens. We next analyzed whether brain reinforcement circuits require functional GHR‐Rs. To this purpose, wild‐type (WT) or mutant rats sustaining N‐ethyl‐N‐nitrosourea‐induced knockout of GHR‐Rs (GHR‐R null rats) were implanted with stimulating electrodes aimed at the lateral hypothalamus, shaped to respond for intracranial self‐stimulation (ICSS) and then tested using a rate‐frequency procedure to examine ICSS response patterns. WT rats were readily shaped using stimulation intensities of 75 µA, whereas GHR‐R null rats required 300 µA for ICSS shaping. No differences in rate‐frequency curves were noted for WT rats at 75 µA and GHR‐R null rats at 300 µA. When current intensity was lowered to 100 µA, GHR‐R null rats did not respond for ICSS. Taken collectively, these data suggest that systemic GHR can activate mesolimbic dopaminergic areas, and highlight a facilitative role of GHR‐Rs on the activity of brain reinforcement systems. 相似文献
7.
The aggregation of parents with offspring is generally associated with different forms of care that improve offspring survival at potential costs to parents. Under poor environments, the limited amount of resources available can increase the level of competition among family members and consequently lead to adaptive changes in parental investment. However, it remains unclear as to what extent such changes modify offspring fitness, particularly when offspring can survive without parents such as in the European earwig, Forficula auricularia. Here, we show that under food restriction, earwig maternal presence decreased offspring survival until adulthood by 43 per cent. This effect was independent of sibling competition and was expressed after separation from the female, indicating lasting detrimental effects. The reduced benefits of maternal presence on offspring survival were not associated with higher investment in future reproduction, suggesting a condition-dependent effect of food restriction on mothers and local mother-offspring competition for food. Overall, these findings demonstrate for the first time a long-term negative effect of maternal presence on offspring survival in a species with maternal care, and highlight the importance of food availability in the early evolution of family life. 相似文献
8.
9.
《Chronobiology international》2013,30(5-6):383-391
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators. 相似文献
10.
Ralph E. Mistlberger Thomas A. Houpt Martin C. Moore-Ede 《Chronobiology international》1990,7(5):383-391
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators. 相似文献
11.
Hou C Bolt KM Bergman A 《Proceedings. Biological sciences / The Royal Society》2011,278(1720):2881-2890
Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counterintuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR. 相似文献
12.
Dietary restriction increases life span and delays the development of age-related diseases in rodents. We have recently demonstrated that chronic dietary restriction is beneficial on recovery of heart function following ischemia. We studied whether the metabolic basis of this benefit is associated with alterations in mitochondrial respiration. Male Wistar rats were assigned to an ad libitum-fed (AL) group and a food restricted (FR) group, in which food intake was reduced to 55% of the amount consumed by the AL group. Following an 8-month period of restricted caloric intake, isolated working hearts perfused with glucose and high levels of fatty acids were subjected to global ischemia followed by reperfusion. At the end of reperfusion, total heart mitochondria was respiration was assessed in the presence of pyruvate, tricarboxylic acid intermediates, and palmitoylcarnitine. Recovery of heart function following ischemia was greater in FR hearts compared to AL hearts. Paralleling these changes in heart function was in increase in state 3 respiration with pyruvate. The respiratory control ratios in the presence of pyruvate and tricarboxylic acid intermediates were higher in FR hearts compared to AL hearts, indicating well-coupled mitochondria. Overall energy production, expressed as the ADP:O ratio and the oxidative phosphorylation rate, was also improved in FR hearts. Our results indicate that the beneficial effect of FR on recovery of heart function following ischemia is associated with changes in mitochondrial respiration. 相似文献
13.
Hfaiedh N Allagui MS El Feki A Gaubin Y Murat JC Soleilhavoup JP Croute F 《Journal of biochemical and molecular toxicology》2005,19(1):12-18
The present study deals with the effects of Ni on the expression level of three stress proteins, namely, the cytosolic HSP72 and HSP73, and the reticulum-associated GRP94. Experiments were carried out on \"Wistar' female rats daily injected with 4 mg NiCl2 per kg body weight for 1, 3, 5, and 10 days. Another set of experiments were carried out using cell lines, derived from the monkey kidney (COS-7), and from human tumors of the lung (A549) and liver (HepG2). Cells were cultured for 4 days in the permanent presence of 100, 200, or 400 microM NiCl2. In control rats, stress proteins pattern was found to be tissue specific: two protein bands of 96 and 94 kDa were immunodetected with the anti-GRP94 antibody in kidney and liver extracts, whereas only the 96 kDa band was present in ovary extracts. HSP73 was present in kidney, liver, and ovary whereas HSP72 was only found in kidney. In kidney of nickel-treated animals, HSP73 and the 96 kDa proteins were overexpressed whereas HSP72 was strongly down regulated. No such effect was observed in liver or ovary. Similarly, in nickel-treated cell lines, HSP72 was downregulated and GRP94 (96 kDa protein) was overexpressed. HSP73 expression appeared moderately increased in A549 cells but decreased in COS-7 cells. Because long-term caloric restriction was reported to reduce free radical generation in cells, the effect of 1 month food restriction (50%) was tested in rats as a possible way to lower oxidative damages induced by Ni. No significant effect on HSP expression was observed. 相似文献
14.
Anne Duplouy Luisa Woestmann Juan Gallego Zamorano Marjo Saastamoinen 《Insect Science》2018,25(2):284-296
In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males’ contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food‐deprivation, and is not influenced by developmental food‐limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult‐resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior. 相似文献
15.
绵羊ghrelin基因表达的组织分布和发育性变化 总被引:2,自引:0,他引:2
选取2、30、60、90和120日龄的雄性哈萨克羊和新疆细毛羊各6只(无120日龄的哈萨克羊),测体重后屠宰,采下丘脑、垂体、心脏、肝脏、瘤胃、网胃、瓣胃、皱胃、十二指肠、背最长肌,用RT-PCR和荧光实时定量PCR法检测ghrelin基因表达的组织分布,及其在皱胃中的发育性变化。研究结果表明:(1)品种内各生长时期的体重差异显著(P〈0.05)。雄性哈萨克羊和新疆细毛羊的体重在2日龄时无显著差异(P〉0.05),30~90日龄间,前者的体重极显著高于后者(P〈0.01);(2)所检测的各组织中都有ghrelin mRNA分布,但主要在皱胃中表达,其表达量远高于其他组织(P<0.05);(3)两品种绵羊皱胃ghrelin基因表达的发育性变化模式基本相似,都随着日龄的增加而呈上升趋势,其中雄性哈萨克羊的表达量在2~60日龄间持续上升,60日龄后趋于水平;雄性新疆细毛羊的表达量在2~90日龄间持续上升,90日龄后趋于水平。研究还发现雄性哈萨克羊皱胃胂relin基因的表达量在2~90日龄间极显著高于新疆细毛羊(P<0.01)。 相似文献
16.
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin’s interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation. 相似文献
17.
Karolina P. Skibicka Caroline Hansson Emil Egecioglu Suzanne L. Dickson 《Addiction biology》2012,17(1):95-107
The decision to eat is strongly influenced by non‐homeostatic factors such as food palatability. Indeed, the rewarding and motivational value of food can override homeostatic signals, leading to increased consumption and hence, obesity. Ghrelin, a gut‐derived orexigenic hormone, has a prominent role in homeostatic feeding. Recently, however, it has emerged as a potent modulator of the mesolimbic dopaminergic reward pathway, suggesting a role for ghrelin in food reward. Here, we sought to determine whether ghrelin and its receptors are important for reinforcing motivation for natural sugar reward by examining the role of ghrelin receptor (GHS‐R1A) stimulation and blockade for sucrose progressive ratio operant conditioning, a procedure used to measure motivational drive to obtain a reward. Peripherally and centrally administered ghrelin significantly increased operant responding and therefore, incentive motivation for sucrose. Utilizing the GHS‐R1A antagonist JMV2959, we demonstrated that blockade of GHS‐R1A signaling significantly decreased operant responding for sucrose. We further investigated ghrelin's effects on key mesolimbic reward nodes, the ventral tegmental area (VTA) and nucleus accumbens (NAcc), by evaluating the effects of chronic central ghrelin treatment on the expression of genes encoding major reward neurotransmitter receptors, namely dopamine and acetylcholine. Ghrelin treatment was associated with an increased dopamine receptor D5 and acetylcholine receptor nAChRβ2 gene expression in the VTA and decreased expression of D1, D3, D5 and nAChRα3 in the NAcc. Our data indicate that ghrelin plays an important role in motivation and reinforcement for sucrose and impacts on the expression of dopamine and acetylcholine encoding genes in the mesolimbic reward circuitry. These findings suggest that ghrelin antagonists have therapeutic potential for the treatment of obesity and to suppress the overconsumption of sweet food. 相似文献
18.
Regulation of hyperphagia in response to varying energy deficits in overwintering juvenile Atlantic salmon 总被引:4,自引:0,他引:4
Resident juvenile Atlantic salmon responded to a period of winter food restriction by subsequently increasing appetite when food again became available. This hyperphagy contributed to the restoration of an energy deficit (derived from a biometric estimation of body lipid reserves) incurred during the period of food restriction. The extent of this deficit influenced the duration of the hyperphagic response: those fish incurring the greatest fat losses maintained appetite longer than those with a smaller energy deficit. The initial feeding intensity of fish incurring a wide range of fat losses was found to be similar, indicating that fish were regulating the length as opposed to the intensity of the hyperphagic response in order to restore losses. The ecological implications of the results are discussed in relation to juvenile salmon overwintering strategies. 相似文献
19.
Kenneth D. Carr 《Neurochemical research》1996,21(11):1455-1467
The incentive-motivating effects of external stimuli are dependent, in part, upon the internal need state of the organism. The increased rewarding efficacy of food as a function of energy deficit, for example, has obvious adaptive value. The enhancement of food reward extends, however, to drugs of abuse and electrical brain stimulation, probably due to a shared neural substrate. Research reviewed in this paper uses lateral hypothalamic electrical stimulation to probe the sensitivity of the brain reward system and investigate mechanisms through which metabolic need, induced by chronic food restriction and streptozotocin-induced diabetes, sensitizes this system. Results indicate that sensitivity to rewarding brain stimulation varies inversely with declining body weight. The effect is not mimicked by pharmacological glucoprivation or lipoprivation in ad libitum fed animals; sensitization appears to depend on persistent metabolic need or adipose depletion. While the literature suggests elevated plasma corticosterone as a peripheral trigger of reward sensitization, sensitization was not reversed by meal-induced or pharmacological suppression of plasma corticosterone. Centrally, reward sensitization is mediated by opioid receptors, since the effect is reversed by intracerebroventricular (i.c.v.) infusion of naltrexone, TCTAP (μ antagonist) and nor-binaltorphimine (κ antagonist). The fact that these same treatments, as well as i.c.v. infusion of dynorphin A antiserum, block the feeding response to lateral hypothalamic stimulation suggests that feeding and reward sensitization are mediated by a common opioid mechanism. Using in vitro autoradiography, radioimmunoassays and a solution hybridization mRNA assay, brain regional μ and κ opioid receptor binding, levels of prodynorphin-derived peptides, and prodynorphin mRNA, respectively, were measured in food-restricted and diabetic rats. Changes that could plausibly be involved in reward sensitization are discussed, with emphasis on the increased dynorphin A1–8 and prodynorphin mRNA levels in lateral hypothalamic neurons that innervate the pontine parabrachial nucleus, where μ binding decreased and κ binding increased. Finally, the possible linkage between metabolic need and activation of a brain opioid mechanism is discussed, as is evidence supporting the relevance of these findings to drug abuse. Special issue dedicated to Dr. Eric J. Simon. 相似文献
20.