首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

2.
Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.  相似文献   

3.
Sexually selected traits are limited by selection against those traits in other fitness components, such as survival. Thus, sexual selection favouring large size in males should be balanced by higher mortality of larger males. However, evidence from red-winged blackbirds (Agelaius phoeniceus) indicates that large males survive better than small males. A survival advantage to large size could result from males migrating north in early spring, when harsh weather favours large size for energetic reasons. From this hypothesis we predicted that, among species, sex differences in body size should be correlated with sex differences in timing of spring migration. The earlier males migrate relative to females, the larger they should be relative to females. We tested this prediction using a comparative analysis of data collected from 30 species of passerine birds captured on migration. After controlling for social mating system, we found that sexual size dimorphism and difference in arrival dates of males and females were significantly positively correlated. This result is consistent with the hypothesis that selection for survival ability promotes sexual size dimorphism (SSD), rather than opposes SSD as is the conventional view. If both natural selection and sexual selection favour large adult males, then limits to male size must be imposed before males become adults.  相似文献   

4.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

5.
11 , Evolution 34 : 292–305) equations for predicting the evolution of sexual size dimorphism (SSD) through frequency‐dependent sexual selection, and frequency‐independent natural selection, were tested against results obtained from a stochastic genetic simulation model. The SSD evolved faster than predicted, due to temporary increases in the genetic variance brought about by directional selection. Predictions for the magnitude of SSD at equilibrium were very accurate for weak sexual selection. With stronger sexual selection the total response was greater than predicted. Large changes in SSD can occur without significant long‐term change in the genetic correlation between the sexes. Our results suggest that genetic correlations constrain both the short‐term and long‐term evolution of SSD less than predicted by the Lande model.  相似文献   

6.
It is commonly argued that sexual size dimorphism (SSD) in lizards has evolved in response to two primary, nonexclusive processes: (1) sexual selection for large male size, which confers an advantage in intrasexual mate competition (intrasexual selection hypothesis), and (2) natural selection for large female size, which confers a fecundity advantage (fecundity advantage hypothesis). However, outside of several well-studied lizard genera, the empirical support for these hypotheses has not been examined with appropriate phylogenetic control. We conducted a comparative phylogenetic analysis to test these hypotheses using literature data from 497 lizard populations representing 302 species and 18 families. As predicted by the intrasexual selection hypothesis, male aggression and territoriality are correlated with SSD, but evolutionary shifts in these categorical variables each explain less than 2% of the inferred evolutionary change in SSD. We found stronger correlations between SSD and continuous estimates of intrasexual selection such as male to female home range ratio and female home range size. These results are consistent with the criticism that categorical variables may obscure much of the actual variation in intrasexual selection intensity needed to explain patterns in SSD. In accordance with the fecundity advantage hypothesis, SSD is correlated with clutch size, reproductive frequency, and reproductive mode (but not fecundity slope, reduced major axis estimator of fecundity slope, length of reproductive season, or latitude). However, evolutionary shifts in clutch size explain less than 8% of the associated change in SSD, which also varies significantly in the absence of evolutionary shifts in reproductive frequency and mode. A multiple regression model retained territoriality and clutch size as significant predictors of SSD, but only 16% of the variation in SSD is explained using these variables. Intrasexual selection for large male size and fecundity selection for large female size have undoubtedly helped to shape patterns of SSD across lizards, but the comparative data at present provide only weak support for these hypotheses as general explanations for SSD in this group. Future work would benefit from the consideration of alternatives to these traditional evolutionary hypotheses, and the elucidation of proximate mechanisms influencing growth and SSD within populations.  相似文献   

7.
Offspring fitness depends on interactions between parental care and environmental constraints. It has been suggested that in altricial birds parents are able to compensate for the detrimental effects of ectoparasites by improving food provisioning. We tested this prediction in a population of blue tits highly parasitized by blowfly larvae. The frequency of parental feeding visits was significantly higher in parasitized broods than in broods experimentally deparasitized. Despite a strong increase in parental care, chicks of parasitized broods were lighter, smaller, and more anaemic than chicks in deparasitized broods. Parents invest more in feeding parasitized young but cannot fully compensate for the negative effects of parasites, hence young are in poor condition at fledging.  相似文献   

8.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

9.
Achromatic patches are a common element of plumage patterns in many bird species and there is growing body of evidence that in many avian taxa they can play a signaling role in mate choice. Although the blue tit Cyanistes caeruleus is a well-established model species in the studies on coloration, its white wing patch has never been examined in the context of sex-specific trait expression. In this exploratory study, we examined sexual size dimorphism and dichromatism of greater covert’s dots creating white wing patch and analyzed its correlations with current body condition and crown coloration—a trait with established role in sexual selection. Further, we qualitatively analyzed microstructural barb morphology underlying covert’s coloration. We found significant sexual dimorphism in the dot size independent of covert size and sexual dichromatism in both white dot and blue outer covert’s vane spectral characteristics. Internal structure of covert barbs within the white dot was similar to the one found in barbs from the blue part that is, with a medullary area consisting of dead keratinocytes containing channel-type ß-keratin spongy nanostructure and centrally located air cavities. However, it lacked melanosomes which was the main observed difference. Importantly, UV chroma of covert’s blue vane was positively correlated with crown UV chroma and current condition (the latter only in males), which should be a premise for further research on the signal function of the wing stripe.  相似文献   

10.
The effects of a series of ecological and size factors on the degree of sexual dimorphism in body weight and canine size were studied among subsets of 70 primate species. Variation in body-weight dimorphism can be almost entirely attributed to body weight (83% of variance R2 of weight dimorphism). Much smaller amounts of the variation can be attributed to mating system (R2 =6.8%,polygynous species being more dimorphic than monogamous ones) and diet (R2 = 2.5%,frugivorous species being more dimorphic than folivorous ones). Habitat (arboreal vs. terrestrial) and activity rhythm (nocturnal vs. diurnal) have only an indirect effect on weight dimorphism. Variation in canine-size dimorphism can be explained in terms of canine size (R2 =49%),activity rhythm (R2 = 20%,diurnal species being more dimorphic than nocturnal ones), and mating system (R2 = 10%).Habitat and diet do not play a significant role in canine-size dimorphism. The unexpectedly high contribution of size to sexual dimorphism coupled with the observation of increased sexual dimorphism with increased size leads us to formulate a new selection model for the evolution of sexual dimorphism. We suggest that if there is selection for size increase, whatever its cause, directional selection in both males and females will lead to an increase in sexual dimorphism based on differences in genetic variance between the sexes. Sexual selection, resource division between the sexes, or lopsided reproductive selection need not play a role in such a model.  相似文献   

11.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

12.
13.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

14.
The Charadrii (shorebirds, gulls and alcids) are one of the most diverse avian groups from the point of view of sexual size dimorphism, exhibiting extremes in both male-biased and female-biased dimorphism, as well as monomorphism. In this study we use phylogenetic comparative analyses to investigate how size dimorphism has changed over evolutionary time, distinguishing between changes that have occurred in females and in males. Independent contrasts analyses show that both body mass and wing length have been more variable in males than in females. Directional analyses show that male-biased dimorphism has increased after inferred transitions towards more polygynous mating systems. There have been analogous increases in female-biased dimorphism after transitions towards more socially polyandrous mating systems. Changes in dimorphism in both directions are attributable to male body size changing more than female body size. We suggest that this might be because females are under stronger natural selection constraints related to fecundity. Taken together, our results suggest that the observed variation in dimorphism of Charadrii can be best explained by male body size responding more sensitively to variable sexual selection than female body size.  相似文献   

15.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

16.
We compare morphological characteristics of male and female Barisia imbricata, Mexican alligator lizards, and find that mass, head length, coloration, incidence of scars from conspecifics, tail loss, and frequency of bearing the color/pattern of the opposite sex are all sexually dimorphic traits. Overall size (measured as snout–vent length), on the other hand, is not different between the two sexes. We use data on bite scar frequency and fecundity to evaluate competing hypotheses regarding the selective forces driving these patterns. We contend that sexual selection, acting through male‐male competition, may favor larger mass and head size in males, whereas large females are likely favored by natural selection for greater fecundity. In addition, the frequency of opposite‐sex patterning in males versus females may indicate that the costs of agonistic interactions among males are severe enough to allow for an alternative mating strategy. Finally, we discuss how sexual and natural selective forces may interact to drive or mask the evolution of sexually dimorphic traits.  相似文献   

17.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

18.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

19.
A fundamental assumption of sexual selection theory is that the reproductive advantage of large size is balanced by a survival disadvantage. Previous studies of the sexually size-dimorphic red-winged blackbird ( Agelaius phoeniceus ) have indicated that the largest adult males have a survival advantage, suggesting that the limit to male size may be the cost of getting big rather than the cost of being big. If the cost of getting big limits male size, then starvation rates for male nestlings should exceed those of female nestlings. In addition, given high heritability of body size, larger parents should lose more nestlings, particularly males, to starvation. We tested these predictions for red-winged blackbirds using data on the sex of 1356 fledglings from 465 nests collected over 10 years. We found no disadvantage for male nestlings relative to females – 49% of fledglings were male and previous research had shown that 48% of hatchlings are male. We also found no disadvantage for male nestlings that would become large adults (i.e. those with larger parents) – partial brood loss and fledging sex ratios did not vary with mid-parent size. Given no apparent disadvantage to large size for males either as adults or as nestlings, this leaves only the period between fledging and adulthood during which natural selection might limit sexual size dimorphism, although other mechanisms might explain the failure to find a limit to male size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 353–361.  相似文献   

20.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号