首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Encystment of the toxic dinoflagellate Gonyaulax tamarensis Lebour (var. excavata) was monitored in batch cultures exposed to a variety of nutritional and environmental treatments. Limitation by nitrogen (as ammonium or nitrate) or phosphorus (as phosphate) resulted in cyst formation. When the initial concentration of limiting nutrient was varied, total cyst yield (mL?1) was directly proportional to the cell yield at all but the highest nutrient concentrations (where encystment was minimal). Encystment efficiency was relatively constant (0.1–0.2 cysts · cell?1) over a 5-fold range of cell densities, indicating that 20 to 40% of the vegetative populations successfully encysted. Cyst formation was negligible in nutrient-replete medium, even with a significant reduction in growth rate due to non-optimal light, temperature, or to high batch culture cell densities. Low light levels did decrease cyst yield once encystment was initiated by nutrient limitation, but this was probably linked to smaller motile cell yield and not to a specific inhibition of encystment. In contrast, encystment was more sensitive to temperature than was growth rate: optimal cyst production occurred over a relatively narrow temperature range and no cysts were formed at [Page missing]  相似文献   

2.
The toxic, chain-forming dinoflagellate Gymnodinium catenatum Graham was cultured from vegetative cells and benthic resting cysts isolated from estuarine waters in Tasmania, Australia. Rapidly dividing, log phase cultures formed long chains of up to 64 cells whereas stationary phase cultures were composed primarily of single cells (23-41 pm long, 27-36 pm wide). Vegetative growth (mean doubling time 3-4 days) was optimal at temperatures from 14.5-20° C, salinities of 23-34% and light irradiances of 50-300 μE·m?2·s?1. The sexual life cycle of G. catenatum was easily induced in a nutrient-deficient medium, provided compatible opposite mating types were combined (heterothallism). Gamete fusion produced a large (59-73 μm long, 50-59 μm wide) biconical, posteriorly biflagellate planozygote (double longitudinal flagellum) which after several days lost one longitudinal flagellum and gradually became subspherical in shape. This older planozygote stage persisted for up to two weeks before encysting into a round, brown resting cyst (42-52 μm diam; hypnozygote) with microreticulate surface ornamentation. Resting cysts germinated after a dormancy period as short as two weeks under our culture conditions, resulting in a single, posteriorly biflagellate germling cell (planomeiocyte). This divided to form a chain of two cells, which subsequently re-established a vegetative population. Implications for the bloom dynamics of this toxic dinoflagellate, a causative organism of paralytic shellfish poisoning, are discussed.  相似文献   

3.
1. The abundance of cysts of the bloom‐forming dinoflagellate Peridinium gatunense in the sediments of Lake Kinneret and the effects of environmental conditions on encystment were studied in relation to bloom dynamics. Peak cyst formation coincided with the highest growth rate of the population, prior to bloom peak. 2. Peridinium cysts were counted in water and sediment corer samples from 2000 to 2003 and in archived sediment trap samples collected during 1993–94. The cyst data were examined in relation to ambient temperature and nutrient records, and revealed no direct correlation. 3. In laboratory encystment experiments with Peridinium cells collected from the lake, 0.2–3% of the vegetative cells encysted. Temperature, light and cell density had no significant effect on the percentage of encystment. 4. Cysts were always present in the lake sediments but their abundance in ‘non Peridinium’ years was much lower than after a massive bloom. Vegetative cells were always present in the water column after the collapse of the annual dinoflagellate bloom, potentially serving as the inoculum for the next bloom. We propose that the hardy cysts serve as an emergency ‘gene bank’ to initiate population build up following catastrophic die outs.  相似文献   

4.
The encystment flux of Peridinium bipes f. occulatum (Dinophyceae) was investigated with sediment traps from 1968 to 1990 in Lake Kazki. Cysts of P. bipes were formed throughout the blooms, Encystment flux of P. bipes in the pelagic zone was usually lower than those at shallow sites, and the density of P. bipes cysts in lake sediment was higher in the shallow region than in the pelagic zone. However, in the shallower region, The concentration of P. bipes cysts varied widely, possibly due to high rates of encystment and excystment. Peridinium bipes encystment occurred between 15° and 25° C in the laboratory, with very little cyst formation below 10°C. Though cyst formation was observed in continous darkness, the rate increased with irradiance. Under continuous darkness, no excystment was observed at any temperature from 5° to 25° C. Eighty-one percent of the cysts illuminated at 105 μE m?2 s?1 excysted after 13 days incubation at 15° C, and lower irradiances decreased germination success. Results from laboratory experiments suggest that light is a critical factor in the germination of P. bipes cysts. Bottom depth thus can have a significant effect on germination because cysts only can excyst from depths where light is sufficient. The shallow region of the lake is thus very important as a seed bed for P. bipes during early spring. Cyst deposited in deeper waters may not ever germinate unless they are resuspended and transported to shallow areas where light reaches the bottom.  相似文献   

5.
《Marine Micropaleontology》1999,38(2):149-180
Only very few studies focus on recent calcareous dinoflagellate cyst diversity, geographic distribution and ecology, so that information on the distribution patterns and environmental affinities of individual cyst species is extremely limited. This information is, however, essential if we want to use calcareous dinoflagellate cysts for palaeoenvironmental reconstruction. Surface sediment samples from the generally oligotrophic western equatorial Atlantic Ocean, offshore northeast Brazil, were therefore quantitatively analysed for their calcareous dinoflagellate cyst content, including the calcareous vegetative coccoid Thoracosphaera heimii. Seven calcareous dinoflagellate cyst species/morphotypes and T. heimii were encountered in high concentrations throughout the area. Substantial differences in the distribution patterns were observed. The highest concentrations of cysts are found in sediments of the more oligotrophic, oceanic regions, beyond the influence of Amazon River discharge waters. Dinoflagellates producing calcareous cysts thus appear to be capable of surviving low nutrient concentrations and produce large numbers of cysts in relatively stable and predictable environments affected by minimal seasonality. To test for the environmental affinities of individual species, distribution patterns in surface sediments were compared with temperature, salinity, density and stratification gradients within the upper water column (0–100 m) over different times of the year, using principal components analysis and redundancy analysis. T. heimii and four of the seven encountered cyst species (Sphaerodinella? albatrosiana, two morphotypes of Sphaerodinella? tuberosa and Scrippsiella regalis) relate to these parameters significantly and the variations in the cyst associations appear to be associated with the different surface water currents characterising the area. The results imply that calcareous dinoflagellate cyst distributions can potentially be used to distinguish between different open oceanic environments and they could, therefore, be useful in tracing water mass movements throughout the late Quaternary.  相似文献   

6.
Cysts of the toxic dinoflagellate Alexandrium tamarense (Lebour) Balech 1992 from the lower St. Lawrence estuary were used in a test of the following hypotheses: (1) cyst germination is triggered by a change in temperature, and (2) germination rate varies throughout the year and is controlled by a circannual internal biological clock. Results show that cyst germination was not affected significantly by temperature of incubation over the range 1°–16° C, and light showed no significant stimulation of germination. This is supported by the lack of effect of cyst incubation conditions during evaluation of the seasonal changes in germination rate (two temperatures: 4° and 15° C, and two light conditions: darkness and 150 μmol photons·m?2·s?1). Thus, direct environmental control through short-term increases in temperature and exposure to light has no effect on the germination of the cysts tested. The rate of germination, observed monthly over a 16-month period, showed low germination (<20%) over most of the period tested, except for a maximum reaching more than 50% germination in August to October of the second year of the experiment. This pattern was observed for cysts both from monthly field collections and from laboratory-stored cysts kept under constant environmental conditions (4° C, in the dark). The peak in germination observed under constant environmental conditions (in the laboratory), the almost coincidental increase in cyst germination observed for the field-collected cysts, and the absence of effects of temperature and light during incubation could be explained either by a temperature-controlled cyst maturation period (the time-temperature hypothesis of Huber and Nipkow 1923) or by the presence of an internal biological clock. However, the large decline in the rate of germination 2 months after the maximum provides strong support for the biological clock hypothesis. The ca. 12-month maturation (dormancy) period observed for the laboratory-stored cysts is the longest reported for this species to our knowledge; this might be related to the low storage temperature (4° C), which is close to bottom temperatures generally encountered in this environment (0° to 6° C). Similar field and laboratory storage temperatures could explain the coincidental increase in germination rate in the fall of the second year if cyst maturation is controlled by temperature. A fraction of the laboratory-stored cysts did not follow a rhythmic pattern: A rather constant germination rate of about 20% was observed throughout the year. This continuous germination of likely mature cysts may supplement the local blooms of this toxic dinoflagellate, as these often occur earlier than peak germination observed in late summer. It seems that two cyst germination strategies are present in the St. Lawrence: continuous germination after cyst maturation, with temperature controlling the length of the maturation period, and germination controlled by a circannual internal rhythm.  相似文献   

7.
Sexual reproduction and encystment of the marine dinoflagellate Gyrodinium uncatenum Hulburt were induced in nitrogen and phosphorus-limited batch cultures. Sexuality did not occur under nutrient-replete conditions even when growth rate was reduced by non-optimal temperatures. Growth was optimal over a broader temperature range than encystment and virtually no cysts were produced at some low and high temperatures where growth occurred. Most cells initiated sexuality as intracellular pools of each limiting nutrient reached minimum or subsistence levels as much as four days after extracellular nutrients were exhausted. High nitrogen cell quotas during the phosphorus experiment indicate that sexuality was induced by a shortage of phosphorus and not by an indirect effect on nitrogen uptake. Total cyst yield corresponded to successful encystment of 9–13% of the motile populations, yet 60–85% of the plateau-phase motile cells were planozygotes (swimming zygotes formed from fusing gametes). Batch culture studies monitoring total cyst yield may thus seriously underestimate the extent of sexuality. More importantly, the number of cysts produced in a dinoflagellate population may be significantly reduced by environmental factors acting on the cells after sexual induction and fusion.  相似文献   

8.
The effects of aging, temperature, and growth medium on germination in culture-produced resting cysts of the marine dinoflagellate Scrippsiella trochoidea (Stein) Loeblich ore examined. Cysts undergo a mandatory period of dormancy lasting approximately 25 days, during which germination does not occur. The duration of this period is not affected by temperature. Once the dormancy period is completed, germination is regulated by external factors. Cysts germinate optimally in nutrient replete medium at temperatures greater than approximately 14° C. At lower temperatures or in nutrient-depleted media germination rate is dramatically slowed, although the final germination frequency appears unchanged. The large Q10 of this temperature effect (ca. 11) suggests that the reduction in germination rate at lower temperatures is not merely the reflection of generally reduced metabolic rates, but rather the result of a temperature response specific to germination. At the highest temperatures tested (22–25° C), germination rate remains maximal although vegetative growth is greatly reduced. A shift in temperature or nutrient conditions, per se, is not necessary for germination. The relatively short dormancy period combined with the absence of a requirement for a dramatic shift in environmental conditions could facilitate rapid cycling between resting and vegetative stages in natural S. trochoidea populations. At the same time, the dramatic reduction in germination rate at low temperatures would permit cysts of this species to serve as overwintering cells as well.  相似文献   

9.
The encystment of Scrippsiella lachrymosa cells (strain B-10), which can be induced reliably in encystment medium, was inhibited by stirring the culture. 100 mL cultures in glass beakers were stirred at 1 rotation s−1. Stirring inhibited vegetative cells from congregating (swarming) at the walls of the culture container. When stirring was stopped, a rapid induction of sexual reproduction was seen. As soon as stirring stopped (within 2 min), cells were observed swarming near the edges of the glass beaker. Four days after cessation of stirring, large percentages of the cells were mating and, after 7 days, most were zygotes. Cultures were observed after 31, 38, and, 45 days of stirring. When cultures were stirred for 45 days, cysts developed in the stirred treatments, but these cysts were attached to flocculent material that had also formed in the medium. The use of this laboratory method is advantageous for the study of the mating through cyst stages of the dinoflagellate life history. This method may also demonstrate the need for a ‘surface’ as a place for the dinoflagellate to congregate in order to successfully encyst and may help explain environmental observations of encystment at pycnoclines.  相似文献   

10.
The effects of aging, temperature, and growth medium on germination in culture-produced resting cysts of the marine dinoflagellate Scrippsiella trochoidea (Stein) Loeblich are examined. Cysts undergo a mandatory period of dormancy lasting approximately 25 days, during which germination does not occur. The duration of this period is not affected by temperature. Once the dormancy period is completed, germination is regulated by external factors. Cysts germinate optimally in nutrient replete medium at temperatures greater than approximately 14°C. At lower temperatures or in nutrient-depleted media germination rate is dramatically slowed, although the final germination frequency appears unchanged. The large Q10 of this temperature effect (ca. 11) suggests that the reduction in germination rate at lower temperatures is not merely the reflection of generally reduced metabolic rates, but rather the result of a temperature response specific to germination. At the highest temperatures tested (22-25°C), germination rate remains maximal although vegetative growth is greatly reduced. A shift in temperature or nutrient conditions, per se, is not necessary for germination. The relatively short dormancy period combined with the absence of a requirement for a dramatic shift in environmental conditions could facilitate rapid cycling between resting and vegetative stages in natural S. trochoidea populations. At the same time, the dramatic reduction in germination rate at low temperatures would permit cysts of this species to serve as overwintering cells as well.  相似文献   

11.
Various life cycle stages of cyst‐producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst‐producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.2 ± 0.5 pg · cell?1), whereas gamete pigment content was 22% lower. The pigment content of zygotes was 82% lower than vegetative cells, even though they appeared darker under the microscope. Zygotes of S. lachrymosa contained significantly higher cellular concentrations of β‐carotene (0.65 ± 0.15 pg · cell?1) than all other life stages. Photoprotective pigments and the de‐epoxidation ratio of xanthophylls‐cycle pigments in S. lachrymosa were significantly elevated in zygotes and cysts compared to other stages. This suggests a role for accessory pigments in combating intracellular oxidative stress during sexual reproduction or encystment. Resting cysts contained some pigments even though chloroplasts were not visible, suggesting that the brightly colored accumulation body contained photosynthetic pigments. The differences in pigmentation between life stages have implications for interpretation of pigment data from field samples when sampled during dinoflagellate blooms.  相似文献   

12.
广东大亚湾甲藻孢囊及其与锥状斯氏藻赤潮的关系   总被引:16,自引:4,他引:12  
1999年12月至2001年1月,在大亚湾澳头海域用沉积物捕捉器(Sediment trap)及TFO重力采泥器对甲藻孢囊进行每月一次的周年监测,并同时研究了浮游植物的季节变化.结果显示,晚秋孢囊形成率最高(3.48105 cysts/m2d),冬季形成率较低,年平均为1.28105 cysts/m2d.锥状斯氏藻(Scrippsiella trochoidea)是大亚湾沉积物孢囊中的绝对优势种,除个别季节外,其形成率一般占孢囊总形成率的50%以上.2000年8月至9月,该海域发生了一次较大规模的锥状斯氏藻赤潮,最高细胞密度达4.0104 cells/mL.赤潮中后期,锥状斯氏藻孢囊包括暂时性孢囊和休眠孢囊大量形成,孢囊的形成减少了水体中营养细胞数量,是赤潮消退原因之一.    相似文献   

13.
Scrippsiella hangoei (Schiller) Larsen is a peridinoid dinoflagellate that grows during winter and spring in the Baltic Sea. In culture this species formed round, smooth cysts when strains were mixed, indicating heterothallic sexuality and hypnozygote production. However, cysts of the same morphology were also formed in clonal strains exposed to slightly elevated temperature. To better understand the role of cysts in the life cycle of S. hangoei, cyst formation and dormancy were examined in culture experiments and the cellular DNA content of flagellate cells and cysts was compared in clonal and mixed strains using flow cytometry. S. hangoei exhibited a high rate of cyst formation in culture. Cysts produced in both clonal and mixed strain cultures were thick‐walled and underwent a dormancy period of 4 months before germinating. The S. hangoei flagellate cell population DNA distributions consisted of 1C, intermediate, and 2C DNA, indicative of respective eukaryotic cell cycle phases G1, S, and G2M. The majority (>95%) of cysts had a measured DNA content equivalent to the lower 1C DNA value, indicating a haploid nuclear phase and an asexual mode of cyst formation. A small percentage (<5%) of cysts produced in the mixed strain culture had 2C DNA, and thus could have been diploid zygotes. These findings represent the first measurements of dinoflagellate resting cyst DNA content, and provide the first quantitative evidence for dinoflagellate asexual resting cysts. Asexual resting cysts may be a more common feature of dinoflagellate life cycles than previously thought.  相似文献   

14.
The effects of ultraviolet radiation (λ= 254 nm) on the kinetics of encystment of the hypotrichous ciliate Laurentiella acuminata and the structure of resting cysts obtained from irradiated precystic cells are reported. High doses of UV-radiation caused a delay of encystment with a linear increase in the average time for obtaining 50% of encystment (EN50). Resting cysts with abnormal cyst walls were obtained when precystic cells were irradiated in the exposure range 720 to 960 J/m2. The cystic layer (mesocyst) was approximately twice as thick (6.5 μ m) as normal (3.7 μ m). Microscopical observations of abnormal cysts revealed the presence of two complete mesocysts, and the absence of the spines characteristic of the ectocyst. The UV-dependent effects on the cyst wall were gradually corrected in successive generations of the irradiated cells.  相似文献   

15.
The occurrence and distribution of dinoflagellate resting cysts were investigated at 11 locations in the south-eastern part of the North Sea. Twenty-six known cyst species and 7 unknown cyst types, which may act as seed population for planktonic dinoflagellate blooms, have been recorded for the first time in the area. The most common cysts in recent sediments were those ofScrippsiella trochoidea, Zygabikodinium lenticulatum, Peridinium dalei, Scrippsiella lachrymosa, Protoceratium reticulatum, Protoperidinium denticulatum, andP. conicum. At all stations,S. trochoidea dominated the cyst assemblages with a maximal abundance of 1303 living cysts/cm3 in the uppermost half centimetre. Cysts of the potentially toxic dinoflagellatesAlexandrium cf.excavatum andA. cf.tamarense were scarce. In the upper 2-cm layer of sediment, dinoflagellate cysts were found in concentrations of 1.8 up to 682 living cysts/cm3. Empty cysts constituted 22–56% of total cyst abundance. The comparative distribution of the cysts showed a general increase in abundance from inshore sites to the offshore area, whereby sandy stations exhibited the lowest cyst abundance and diversity. The wide distribution of living and empty cysts ofScrippsiella lachrymosa suggests that its motile form, which has not been officially recorded in the area until now, is a common plankton organism in German coastal waters. The relatively high abundance of cysts in recent sediments demonstrates the potential importance of benthic resting stages for the initiation of dinoflagellate blooms in the study area.  相似文献   

16.
17.
The surface morphology of the dinoflagellate Coolia monotis Meunier was compared with the surface morphology of Ostreopsis, The apical pore of C. monotis is similar in architecture to that of Ostreopsis but considerably longer (12 μm) than in O. heptagona (8–9 μm) and O. ovata (6–7 μm). A ventral pore in C. monotis is located on the right ventral margin between apical plate l′ and precingular plate 6″ and is similar in appearance and location to the ventral pore of O. ovata. The longitudinal flagellum (20 μm) in C. monotis is longer than in O. ovata (12 μ). Although Coolia and Ostreopsis appear to be distinctly different and should remain as two separate genera, they appear to be related. Cells of C. monotis divided by binary fission. Doubling time was 3–4 days in the logarithmic phase of growth at 23°C, 12:12 h L:D, 30–90 μE-m?2·s?1, and a salinity of 36%. Cultures reached cell densities of 2.5 × 103 cells·L?1 after 15 days of growth. The sexual process in C. monotis occurred in Erdschreiber's medium when Danish soil extract was substituted with mangrove sediment extract under the culture conditions described above. Gamete fusion produced large biflagellated planozygotes (70–75 μm diam). Planozygote maturation involved cytoplasmic reorganization, loss of motility, development of a spherical shape (80–90 μm diam), and two to three orange accumulation bodies. The cells at this stage appeared to be thin-walled cysts. Further development included reorganization of cyst contents, emergence of non-motile gametes, and development of chloroplasts, sulcus, and girdle. The nucleus of the newly formed cells occupied 50% or more of the total cell volume. Meiosis occurred in the cyst, but nuclear cyclosis was not observed. Four daughter cells were produced within 36–48 h, and motile gametes developed. The gametes exhibited sexuality for 2 months and completed the sexual life cycle by going through a thin-walled cyst stage.  相似文献   

18.
Tardigrades have two forms of dormancy, namely cryptobiosis and encystment. The encystment is a form of diapause known for a limited number of species of tardigrades and still little studied. To increase the knowledge on encystment, two species of eutardigrades from Italy have been considered: the moss-dwelling Amphibolus volubilis (Eohypsibiidae), and the limnic Dactylobiotus parthenogeneticus (Murrayidae). Cysts have been collected in nature, or induced under laboratory conditions. In the latter case, it was possible to follow the several steps of encystment processes. Two different types of cyst (“type 1” and “type 2”) have been found in A. volubilis, while in D. parthenogeneticus only one type has been found. In general, the ovoid-shaped cysts are constituted by a series of cuticles surrounding the animals and resemble an onion or a Matrioshka Russian doll. In all three types of cyst, the encystment processes show both common and peculiar traits. Encystment begins with the discharging of the sclerified parts of the buccal-pharyngeal apparatus, as in the molting process, but without the loss of the old cuticle. Then, two or three new cuticles are serially synthesized, according to cyst type. In A. volubilis, the ultrastructure of these new cuticular involucra is similar to that of non-encysted animal cuticles, while in D. parthenogeneticus the ultrastructure of the new cuticular involucra differs from that of non-encysted animal cuticle. A modified buccal-pharyngeal apparatus has been observed both in “type 2” cyst of A. volubilis and in the D. parthenogeneticus cyst.  相似文献   

19.
Cysts of a chain‐forming dinoflagellate Gyrodinium impudicum Fraga et Bravo (Gymnodiniales) were found in surface sediments of Harima‐Nada and Nakaumi, western Japan. The detailed morphology of living and empty cysts is described. The living cysts are roundish to ellipsoidal in polar view, and hemispherical in lateral view. Among three empty cysts obtained, two different archeopyles were observed; either a long slit with an operculum, or a hole with irregular zigzag outline. The living cysts of Gyro. impudicum are morphologically similar to those of the genus Chattonella antiqua (Hada) Ono and Chattonella marina (Subrahmanyan) Y. Hara et Chihara (Raphidophyceae), except cyst color and contents. The living cysts of Gyro. impudicum were rarely encountered, and their density was always less than 1 cell in 1 cm?3 in the present samples.  相似文献   

20.
Growth, blade shape and blade thickness of young gametophytes of Porphyra abbottae Krishnamurthy cultured from conchospores were determined at various combinations of temperature (8, 10, 12° C), photon flux density (17.5, 70, 140 μmol·m-?2·S?1), nutrient concentration (5, 25, 50, 100% f medium) and water motion (0, 50, 100, 150 rpm). Growth (as surface area) was light-saturated at 70 μmol· m?2· S?1, light-inhabited at 140 μmol·m?2· S?1, and nutrient-saturated an 25% f medium. Temperature had no significant effect on growth. Water motion and nutrients had an interactive effect on growth, with water motion having the greatest effect at the lowest nutrient concentrations. Water motion enhanced growth even at saturating nutrient concentrations. Blade length / width ratio was greater in low light (2.5) than in saturating light (1.9); with increasing water motion the ratio increased from 1.2 to 2.4. Blade thickness (53-88 μm) was greatest at the highest nutrient concentrations and at the lowest water motion levels. Temperature and light did not have a consistent effect on blade thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号