首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Understanding processes in complex assemblages depends on good understanding of spatial and temporal patterns of structure at various spatial scales. There has been little quantitative information about spatial patterns and natural temporal changes in intertidal assemblages on sheltered rocky shores in temperate Australia. Natural changes and responses to anthropogenic disturbances in these habitats cannot be accurately measured and assessed without quantitative data on patterns of natural variability in space and through time. This paper describes some suitable quantitative methods for examining spatial and temporal patterns of diversity and abundances of highshore, midshore and lowshore intertidal assemblages and the important component species for a number of shores in a bay that has not been severely altered by human disturbance. Despite a diverse flora and fauna on these shores, the midshore and lowshore assemblages on sheltered shores were characterized by a few species which were also the most important in discriminating among assemblages on a shore and, for each assemblage, among different shores. The same set of species was also important for measuring small-scale patchiness within each assemblage (i.e. between replicate sites on a shore). Therefore, these data provide a rationale for selecting species that are useful for measuring differences and changes in abundance among places and times at different scales and, hence, can be used in the more complex sampling designs necessary to detect environmental impacts. There was considerable spatial variability in all assemblages and all species (or taxa) examined at scales of metres, tens of metres and kilometres. There were no clear seasonal trends for most measures, with as much or more variability at intervals of 3 months as from year to year. Most interactions between spatial and temporal measures were at the smallest scale, with different sites on the same shore generally showing different changes from time to time. The cause(s) of this apparently idiosyncratic variability1 were not examined, but some potential causes are discussed. These data are appropriate for testing hypotheses about the applicability of these findings to other relatively undisturbed sheltered shores, about effects of different anthropogenic disturbances on sheltered intertidal assemblages and to test hypotheses about differences in intertidal assemblages on sheltered versus wave-exposed shores.  相似文献   

2.
Small-scale temporal variation in abundances of fauna in marine soft sediments has long been recognised. Many studies on rocky intertidal shores have, however, focused on larger fauna in single habitats and have primarily examined relatively long time-scales. The implications of small-scale variability are frequently not adequately addressed in the studies of changes in fauna over longer time-scales. Without knowledge of the magnitude of variation at smaller scales, comparisons across longer time-scales may be confounded. In this study, the temporal variability of a number of co-existing species of microgastropods in patches of two different intertidal habitats (coralline turf and sediment) in Botany Bay, New South Wales, Australia, was measured using a nested, hierarchical sampling design incorporating temporal scales of weeks, 1 and 3 months. In addition to habitats, there were also spatial scales of metres between plots and 100s of metres between the locations. There was generally a lack of consistency in the trends of variance for the three temporal scales at the smallest spatial scale of plots. In addition, the different species, including those that were closely related, showed different patterns of variation, depending on the habitat and site. These data show the importance of incorporating adequate scales of sampling in different habitats when analysing the distribution and abundance of microbenthos in intertidal habitats.  相似文献   

3.
Quantifying and understanding the spatial patterns of variation in diversity and abundances of intertidal animals is receiving increased attention because causal models must focus on the scales at which individual organisms interact. Intertidal boulders are complex and naturally fragmented habitats and many species on boulders are absent from the matrix on which boulders lie and which separates individual boulders. This study builds on quantified observations of molluscs and echinoderms living underneath boulders in a sheltered boulder-field in New South Wales, Australia, which documented that, at the same tidal height, most of the variation in these fauna was at the scale of individual boulders, or between replicate sites only 20 m apart. Here, six specific models and hypotheses about spatial and temporal variability arising from that study were tested in 4 boulder-fields along 200 km of coast. Most variation was at the scale of individual boulders and between sites within boulder-fields, with some sites having similar fauna to sites in other boulder-fields and sites in the same boulder-fields having very different fauna. Although individual taxa were very variable in abundance, measures of the assemblages remained relatively consistent through time. Both rare and abundant species were extremely overdispersed, only being found on a minority of boulders and with very large abundances on some of these. The degree of overdispersion varied among boulder-fields for some taxa and not others, but there was no generality of patterns for a range of taxa in the same boulder-field, nor for individual taxa in different locations. Nevertheless, over 95% of the 1200 boulders sampled were occupied by at least one species. These extreme patterns of partitioning of habitat are discussed briefly in terms of managing these complex habitats.  相似文献   

4.
Spatial and temporal variation in patterns of distribution and abundance of algal assemblages is large and often occurs at extremely small spatial and temporal scales. Despite this, few studies investigate interactions between these scales, that is, how patterns of spatial variation change through time. This study investigated a number of scales of spatial variation (from tens of centimetres to kilometres) in assemblages of intertidal and subtidal turfing algae. Significant differences were found in the composition and abundances of species in assemblages of turf at all spatial scales tested. Much of the variation among assemblages could, however, be explained at the scale of quadrats (tens of centimetres apart) (27±1.4 (SE)% of dissimilarity) with an additional 7±1.2% explained at the scale of sites (tens of metres apart) and 10±1.5% at the scale of locations (kilometres apart). Although the greatest dissimilarity in assemblages occurred at the scale of habitats, this accounted for a relatively small proportion of the overall variation in assemblages. These patterns were consistent through time, that is, at each sampling time the spatial scale explaining the greatest proportion of variation in assemblages was replicate quadrats separated by tens of centimetres. These patterns appear to be due to small-scale variation in patterns of distribution and abundances of the individual species that comprise turfing algal assemblages. The results of this experiment suggest that large scale processes have less effect on patterns of variability of algal assemblages than those occurring on relatively smaller spatial scales and that small-scale spatial variation should not be considered as simply “noise”.  相似文献   

5.
Scales of spatial patterns of distribution of intertidal invertebrates   总被引:15,自引:0,他引:15  
Few comparative studies of spatial patterns at different scales have examined several species in the same habitat or the same species over a range of habitats. Therefore, variability in patterns among species or among habitats has seldom been documented. This study quantifies spatial patterns of a suite of intertidal snails and a species of barnacle using a range of statistical techniques. Variability in densities was quantified from the scale of adjacent quadrats (over a distance of centimeters) to tens of kilometers. Significant differences in abundances occurred primarily at two spatial scales. Small-scale differences were found at the scales of centimeters or 1–2 m and, for many species on many shores, these accounted for most of the variability in abundances from place to place. These are likely to be determined by behavioural responses to small-scale patches of microhabitat. Large-scale differences in abundance were also found in most species at the scale of hundreds of meters alongshore. These are likely to be due to variation in recruitment (and/or mortality) because of limited dispersal by adults of these species. There was little or no additional variation among shores, separated by tens of kilometers, than was shown among patches of shore separated by hundreds of meters. Identification of the scale(s) at which significant differences in abundance are found focus attention on the processes (and the scales at which these processes operate) that influence patterns of distribution and abundance. Some of the advantages and disadvantages of various procedures are discussed.  相似文献   

6.
Abstract Differences between marine soft‐sediment assemblages at disturbed (two waste dumps, a sewage outfall and a wharf) and control locations were found at Casey Station, Antarctica. These differences were significant against considerable background spatial variability. Core samples were collected by divers using a hierarchical, spatially nested sampling design incorporating four scales: (i) locations (thousands of metres apart); (ii) sites (hundreds of metres apart); (iii) plots (tens of metres apart); and (iv) among replicates within plots (approximately 1 metre apart). Control locations had greater species richness and diversity than disturbed locations and there were many taxa found at control locations that were not recorded at disturbed locations. Assemblages at disturbed locations were less variable than those at control locations. In contrast, populations of some dominant species were more variable at disturbed locations than at control locations. Significant variation in populations of individual taxa was also found at all scales and although greatest at the level of location, variation was also large at the smallest scale, between replicate cores, indicating significant small‐scale patchiness in populations of taxa. Patterns of assemblage structure were similar at fine (77 taxa) and medium (aggregated to 33 taxa) levels of taxonomic resolution, but changed at coarse levels of resolution (nine phyla). Soft‐sediment assemblages at Casey Station are markedly different from those reported from other areas of Antarctica. Assemblages at Casey are almost completely dominated by crustaceans (up to 99% total abundance) and polychaetes are rare or in very low abundances in most areas investigated in the region. This is also the first demonstration that small Antarctic research stations (population 20–50 people) may cause impacts that are detectable in the adjacent marine environment.  相似文献   

7.
Recruitment is often important in structuring patterns of distribution and abundance of algal assemblages. Intertidal and subtidal turfing algal assemblages consistently vary on small spatial scales (tens of centimetres), and this variability may be due to patterns of recruitment varying on similar spatial scales. The validity of this model was evaluated by testing the hypothesis that the numbers and types of taxa recruiting to turfs would vary at small spatial scales within intertidal and within subtidal habitats. Abundances of algal recruits were estimated on sandstone plates that were placed at a number of spatial scales within intertidal and within subtidal habitats (centimetres to tens of metres). Significant differences in entire assemblages were found only between habitats. This was explained by abundances of individual taxa, which generally varied between intertidal and subtidal habitats or between sites within habitats. Only small proportions of the overall spatial variation (dissimilarity) could be explained at the scale of replicate recruitment plates that were centimetres apart. Results indicate that while recruitment may contribute to differences between intertidal and subtidal habitats, it cannot explain the small-scale spatial variability in established turfing algal assemblages within these habitats. There was some evidence to suggest that recruitment may contribute to variability in established turfing algal assemblages but only over longer time scales than examined here.  相似文献   

8.
Studies from temperate and tropical regions have shown that variability in the distribution of benthos exists at different spatial scales. There are very few similar studies from polar systems, the shallows of which represent some of the most intensely disturbed habitats on the planet. Variability in the abundances of the five most common macrofauna was examined at three spatial scales, metres, tens of metres and hundreds of metres, in the shallows (5-25 m depth) of Adelaide Island, West Antarctic Peninsula. Whilst significant community change occurs along a depth gradient at the study sites, not all of the common species studied showed clear depth-related patterns of distribution. Furthermore, although abundance patterns varied between the organisms, consistent depth-related trends in the spatial scale contributing most to the variability were observed for four of the five species. For four species the relative importance of large-scale variability (between sites) decreased from 5 to 25 m depth, whilst small-scale variability (between replicates) increased along the depth gradient. Variation between sites is probably largely driven by ice disturbance, which becomes less frequent with depth. Conversely, small-scale patchiness is promoted by biological interactions, which become relatively more influential as community complexity and species richness increase along the depth gradient.  相似文献   

9.
10.
The rock type of hard substrata marine habitats can affect numerous benthic invertebrates, but little is known of the effects on molluscan assemblages, for example, the chitons often found under intertidal boulders. We compared chiton assemblage composition, abundance, species richness, and patterns of frequency distribution in 10 boulder fields containing either hard metamorphic/igneous boulders or soft limestone boulders in two geographical areas in South Australia. Similar species richness occurred in both types of boulder fields, but hard rock boulder fields had greater overall abundances, because of particularly large abundances of some common species. Differences in abundances of common species also resulted in significantly different assemblages occurring between the boulder field types. Some species appeared aggregated among boulders, but this pattern was variable between boulders in differing areas and of differing rock type. In one area, a common species had variable aggregation that caused frequency distributions to differ significantly between boulders of different rock types. These results indicate that rock type needs to be considered when investigating ecological patterns and processes involving specialist molluscs such as under-boulder chitons and to ensure comprehensive marine reserve planning for protecting rare invertebrates in rocky intertidal reefs.  相似文献   

11.
Intertidal and shallow subtidal boulder fields are relatively uncommon along the coast of New South Wales, Australia. Nevertheless, they provide habitat for a diverse suite of species, many of which are seldom found in other habitats. The types and abundances of animals found on or under boulders can be influenced by features of the boulders themselves, or by features of the substratum on which a boulder lies. Boulders can be colonized by larvae, or by adult or juvenile animals drifting in the water column or crawling up from the substratum. This experiment investigated the effect of an algal or sandy substratum on early stages of colonization of new boulders in two boulder fields by a suite of invertebrates, including gastropods, bivalves, chitons, polychaetes and insect larvae. Replicate times of three different periods (5, 18 and 38 days) tested for consistency of patterns of colonization at different times. Although the experiment was completed in a single season (within 2 months), there was considerable variation in patterns of abundances and diversity between replicate times. Thus, for each time in each period of a particular length, a different assemblage developed on the algal or sandy substratum in each boulder field. Despite this temporal variation, a few taxa showed some consistency of colonization among habitats, although most showed unpredictable patterns. The implications of these patterns of colonization for the creation or restoration of new intertidal and shallow subtidal boulder fields are discussed.  相似文献   

12.
Conservation programs must be based on a detailed knowledge of the distribution of communities and populations, but this changes with the spatial scale of observation. In this context, we examined the multiscale patterns of spatial variation of a montane amphibian assemblage in Central Spain. The largest spatial scale examined (in a range of 1200 m) accounted for the maximum variability in both species richness and larval abundance, while the smallest scale examined (pond) was responsible for the maximum variation of larval abundances of many individual species. Habitat characteristics seemed to be more related to spatial variation of the amphibian assemblage at a particular spatial scale (in a range of 75 m), and distances among ponds were in part responsible for variation of larval abundance, but not species richness.  相似文献   

13.
The focus of this study was to measure natural spatial variability in the biodiversity of fauna inhabiting kelp holdfasts in northeastern New Zealand at several spatial scales: from meters up to hundreds of kilometers. We wished to test the hypothesis that multivariate variation and biodiversity would vary significantly at different spatial scales in different ways for the major phyla in the holdfast community (Arthropoda, Annelida, Mollusca and Bryozoa). Biodiversity was considered in terms of richness, total abundance, structural composition (as measured by the Bray-Curtis dissimilarity measure) and taxonomic breadth for each major phylum and for the assemblage as a whole. We also examined the effect of taxonomic resolution on multivariate patterns. Species richness and total abundance increased with increases in holdfast volume. Multivariate variation was greatest at the smallest spatial scale for all phyla, but different phyla showed different patterns of multivariate variation at different spatial scales. Variations among locations at the largest spatial scale were primarily due to differences in the composition and richness of bryozoans and molluscs. Location effects became less and less distinct with decreases in taxonomic resolution. There were very few significant differences in richness or abundance for holdfasts of a given volume, taxonomic breadth did not vary significantly across locations, nor did the proportional abundances of phyla. These consistencies across large spatial scales in the absence of environmental impacts and results from other studies suggest that holdfast communities in New Zealand systems would provide a useful model assemblage against which future impacts may be detected as changes in proportions of component phyla. In addition, high variability detected at small and large scales at the species level, especially for bryozoans and molluscs, suggest that these communities may also provide unique opportunities for studying and understanding sources and functions of marine biodiversity.  相似文献   

14.
Abstract Chitons of the genus Ischnochiton are found predominantly on the undersurfaces of boulders, compared with other intertidal or subtidal habitats. They therefore appear to be habitat‐specialists at this scale. This, combined with the fact that boulder fields are relatively sparse compared with other intertidal habitats, makes these animals vulnerable to natural and anthropogenic disturbances. In addition, many species of Ischnochiton are relatively rare and appear to have very patchy abundances, making them likely to have very specific requirements for habitat. We need to understand the habitat requirements in order to manage, conserve and restore disturbed habitats. The present study was carried out at three intertidal boulder fields separated along approximately 200 km of the coast of New South Wales, Australia, centred around Sydney. The boulder fields were representative of those found in this region. The boulders were made of different materials: shale in the north, sandstone in Sydney and quartzitic sandstone in the south. Some boulders in each boulder field were covered by up to 0.4 m of water during low tide. The study showed that the seven species examined were overdispersed among boulders in each of these three intertidal boulder fields. Most boulders did not have associated chitons, but there were very large abundances on a very small number of boulders. Chitons were also overdispersed among boulders that they occupied. These patterns were consistent among shores and among species, even though patterns of abundance were extremely different among different species. These species appear therefore to show specific requirements for habitat at a small spatial scale, using only a small proportion of potential patches of habitat (i.e. boulders) in any place. Extremely patchy patterns of dispersion can be caused by variation in patterns of recruitment, mortality or behavioural responses to habitat or other species. Before performing experiments to investigate such processes, it is useful to test hypotheses of association with habitat using mensurative experiments to identify environmental correlates that might explain the observed patterns. In the present study, sizes of boulders and the associated sessile and mobile assemblages were proposed as mechanisms that could affect dispersion of chitons among boulders. None of these factors, however, showed strong associations with abundances of chitons. The lack of support of these models rules out some features of habitat to which species of Ischnochiton might respond, thereby precluding manipulative experiments involving these features, which are unlikely to be involved in the very patchy patterns of dispersion of species of Ischnochiton.  相似文献   

15.
Abstract The potential of colonization to contribute to the spatial patterns of six common invertebrates in coralline algal turf was investigated on a rocky shore near Sydney, Australia. The species, which included two amphipods (Elasmopus warra, Hyale spp.), a small bivalve (Lasaea australis), a fly larva (Limonia marina), and two microgastropods (Amphithalamus incidata and Eatoniella atropurpurea), had a range of dispersal modes (larval dispersal, crawling, swimming, rafting, and passive transport). Field sampling between May 1997 and November 1999 demonstrated that the amphipods were more abundant in low‐shore areas, the fly larvae and bivalves were more abundant in mid‐shore areas, and the abundances of gastropods did not vary with tidal height. Furthermore, abundances of all species varied among patches separated by tens of metres at one time or another. To test whether rates of colonization could contribute to established patterns of abundance, habitat mimics were deployed for 2‐week periods. The supply of new individuals matched long‐term patterns of abundance at different tidal heights for E. warra and L. marina. Colonization rates also differed among patches separated by tens of metres for three of the six species. Overall, there was little evidence to suggest that common species in coralline turf are limited by colonization on local scales, regardless of their major mode of dispersal. However, the potential for colonization to determine patterns of abundance varied from species to species.  相似文献   

16.
 Patterns of abundance of large piscivorous fish (>200 mm TL) were documented at two spatial and four temporal scales within the main lagoon of One Tree Reef on Australia’s Great Barrier Reef. Grouper (Serranidae), snapper (Lutjanidae) and wrasses (Labridae) were the most abundant large piscivores. On a large scale (hundreds of metres), patterns of predator abundance were consistently greater on the inner edge than centre of the lagoon over a range of temporal scales: days, weeks, months and years. On a small spatial scale (tens of metres), the abundance of large predatory fish was patchy. At both spatial scales, fish were consistently aggregated in particular areas and associated with specific structural features of the reef habitat. Predator abundance was high where live corals were predominant and the topography was more complex. Hence, predation pressure and its potential effects on the distribution and abundance of prey populations, both in time and space, may vary greatly within lagoonal environments. Accepted: 25 May 1997  相似文献   

17.
Substratum type and topographic complexity influence the settlement and persistence of benthic organisms. However, the combined effect of these two factors in affecting colonization patterns at different scales has rarely been investigated. A manipulative experiment was conducted to test the interplay of rock type and roughness in affecting the pattern of subtidal assemblages and to provide tests for the generality of effects across a range of spatial scales (centimetres to hundreds of metres). Replicate tiles of four different rock types, with two levels of surface roughness were deployed in rocky subtidal habitats (5 m depth) at two sites (separated by hundreds of metres) at each of three locations (separated by tens of kilometres). Spatial and temporal variation in the colonization patterns over 9 months differed among rock types. However, large-scale processes appeared to be far more important than substratum type or roughness in determining assemblage structure. Predicting the consequences of the introduction of artificial structures into the coastal marine environment is critical as increasingly parts of coastlines are being modified within the Mediterranean and other regions. The results suggest that further investment is needed to manage and mitigate the effects of the deployment of artificial structures in coastal areas.  相似文献   

18.
Restoration is important in urban areas where habitat destruction is greatest. It incorporates many levels of intervention, with creation of new habitat the most extreme form. Most research on habitat creation has been terrestrial, or in marine habitats dominated by large structuring biota, such as mangroves. Intertidal boulder‐fields in urban areas are vulnerable to disturbances and habitat loss, which adversely affect numerous habitat specialists. This study describes experiments in which quarried stones were used to create new habitat outside natural boulder‐fields as a practical approach to restoring habitat. Colonization by specialist fauna and by common algae and invertebrates was measured for a year after deployment. Despite sessile assemblages on new boulders differing from those on natural boulders, common and rare animals rapidly colonized the new habitat. There was no clear succession, but colonization was variable and patchy at all scales examined, although diversities and abundances of some species in this novel habitat matched those of natural boulders within a few months. Rare and common animals generally colonized the new habitat as adults moving in from surrounding areas. Creating new boulder‐fields using quarried rocks is a successful approach to restoration and conservation of fauna where natural boulder‐fields are threatened.  相似文献   

19.
Joniak  Tomasz  Goł dyn  Ryszard  Kozak  Anna 《Hydrobiologia》2003,496(1-3):311-319
Patterns in composition, abundance and diversity of the annelid fauna (Polychaeta and Oligochaeta) in 22 sandy beaches in Iceland were explored. The effect of exposure on annelid distribution was studied. A total of 5651 annelids were recorded from 160 core samples. Oligochaetes (chiefly Tubificidae) dominated the annelid assemblage whereas polychaetes represented a minor fraction. Polychaetes were relatively more abundant in exposed than in sheltered beaches, contrary to oligochaetes. Meiofaunal polychaete species were also more abundant in exposed than in sheltered beaches. Southwest beaches seemed more diverse in annelid species than northern ones. Annelid diversity did not differ between sheltered and exposed sites, but higher diversity was attained in fine sands at sheltered areas. Cluster analysis revealed large differences between beaches in the annelid community composition. The general patterns found suggest that beach exposure is a major factor conditioning macro- and meiofaunal polychaete and oligochaete distribution along the Icelandic coast.  相似文献   

20.
Synopsis We sampled the littoral-zone fish fauna of Lake Texoma reservoir by electrofishing from January through December 1986 to examine species abundance, species associations and assemblage structure. Although total fish abundance differed significantly across seasons, only one common species (Dorosoma cepedianum) exhibited significant seasonal movement into or out of the littoral zone. Overall littoral-zone assemblage structure (based on rank order of species abundance) was concordant across seasons and habitat types, (vegetation, wood, open). However, within individual seasons and habitat types, assemblage structure was likely influenced by temporal and spatial differences in habitat availability and physicochemical conditions. Associations characteristic of species in natural aquatic environments were not well developed among species in this partly artificial, evolutionarily short-lived reservoir assemblage. Conditions related to water-level fluctuation appeared to deter the formation of persistent species associations and assemblage structure, especially in vegetation and open littoral zone habitats of this multi-purpose reservoir.Senior author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号