首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study has examined the importance of the isocaproic side chain at C-17 of cholesterol to sterol/phospholipid interactions in monolayer membranes and to the cholesterol oxidase-susceptibility of cholesterol in pure and mixed monolayers at the air/water interface. The interactions between cholesterol or 5-androsten-3 beta-ol (which lacks the C-17 side chain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in monolayers indicated that 5-androsten-3 beta-ol was not very efficient in causing condensation of the monolayer packing of POPC. Whereas cholesterol condensed the packing of POPC at all molar fractions examined (i.e., 0.25, 0.50 and 0.75 with regard to POPC), 5-androsten-3 beta-ol caused a slight condensing effect on POPC packing only in the equimolar mixture. The mean molecular area requirement of 5-androsten-3 beta-ol (in pure sterol monolayers at different lateral surface pressures) was 2.2-6.7% less than that observed for cholesterol. The pure 5-androsten-3 beta-ol monolayer also collapsed at lower lateral surface pressures compared with the pure cholesterol monolayer (34 mN/m and 45 mN/m, respectively). The cholesterol oxidase (Streptomyces sp.) catalyzed oxidation of cholesterol or 5-androsten-3 beta-ol in pure monolayers in the air/water interface (10 mN/m) proceeded with very similar rates, indicating that the enzyme did not recognize that the C-17 side chain of 5-androsten-3 beta-ol was missing. The oxidation of cholesterol or 5-androsten-3 beta-ol in mixed POPC-containing monolayers (equimolar mixture) also revealed similar reaction rates, although the reaction was slower in the mixed monolayer compared with the pure sterol monolayer. When the oxidation of cholesterol and 5-androsten-3 beta-ol was examined by monitoring the production of H2O2 (the sterol was solubilized in 2-propanol and the assay conducted in phosphate buffer), the maximal reaction rate observed with 5-androsten-3 beta-ol was only about 41% of that measured with cholesterol. From the cholesterol oxidase point-of-view, it can be concluded that the enzyme did not recognize the C-17 side chain of cholesterol (or lack of it in 5-androsten-3 beta-ol), when the sterol was properly oriented as a monolayer at the air/water interface. However, when the substrate was presented to the enzyme in a less controlled orientation (organic solvent in water), 5-androsten-3 beta-ol may have oriented itself unfavorably compared with the orientation of cholesterol, thereby leading to slower oxidation rates.  相似文献   

2.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

3.
G N Ranadive  A K Lala 《Biochemistry》1987,26(9):2426-2431
Several double-bond isomers of cholesterol where the normal C5-C6 double bond (delta 5) has been moved to different positions in the ring skeleton, i.e., delta 1, delta 4, delta 7, delta 8(9), delta 8(14), and delta 14, have been synthesized and incorporated in phosphotidylcholine vesicles. In addition, dienes like delta 5,7, delta 7,14, and delta 8,14 have also been studied. Many of these cholesterol analogues are intermediates in the sterol biosynthesis in different organisms. The incorporation studied indicated that more than 90% of the sterol was present in the vesicles. The effect of these cholesterol analogues was studied by glucose permeability, electron spin resonance, and fluorescence polarization spectroscopy. These studies indicated that delta 14-cholesten-3 beta-ol was most effective in restricting glucose permeability or in increasing the order parameter but was still not as effective as cholesterol. This was followed by delta 8(14)- and delta 8(9)-cholesten-3 beta-ol. The delta 1, delta 4, and delta 7 analogues and the dienols were relatively less effective in condensing the membrane. These studies indicate that the double bond at C5-C6 in cholesterol is most effective for optimal sterol-phospholipid interaction and may have formed the basis of the migration of the double bond from rings C and D in sterols to C5-C6 during the evolution of cholesterol.  相似文献   

4.
Synthesis of ergosterol is demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the medium sterol was 5 alpha-cholestan-3 beta-ol, 5 alpha-cholest-8(14)-en-3 beta-ol, or 24 beta-methyl-5 alpha-cholest-8(14)-en-3 beta-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol). Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labeling from [3H]acetate. Except for some cholest-5-en-3 beta-ol (cholesterol) which was derived from the 5 alpha-cholestan-3 beta-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the medium sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5 alpha-cholest-8(9)-en-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol (lathosterol) were converted to cholesta-5,7-dien-3 beta-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol. The most attractive of the possible explanations for our observations is the assumption of two genetic compartments for synthesis of sterols, one of which has and one of which has not been affected by the two mutations. The ability, despite the mutations, to synthesize small amounts of ergosterol which could act to regulate the cell cycle may also explain why this mutant can grow aerobically with cholesterol (acting in the bulk membrane role) as the sole exogenous sterol.  相似文献   

5.
A series of analogues of cholesterol, each having a shortened side chain and a primary amine group, were prepared and tested for their effects on bovine adrenocortical cholesterol side chain cleavage cytochrome P-450 (P-450scc). A previous study had shown that one derivative, 22-amino-23,24-bisnor-5-cholen-3 beta-ol, is a potent competitive inhibitor of the enzyme and forms a complex in which the steroid ring binds to the cholesterol site and the side chain amine forms a bond with the heme iron (Sheets, J. J., and Vickery, L. E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5773-5777). In the studies reported here, the 23-amine derivative, 23-amino-24-nor-5-cholen-3 beta-ol, was found to be an equally potent inhibitor and to be competitive with respect to cholesterol (Ki = 38 nM). Binding of the 23-amine to P-450scc also caused formation of a low spin complex with an absorption maximum at 422 nm, indicative of a nitrogen-donor ligand. Other derivatives in which the side chain amine was linked closer to the steroid, 17 beta-amino-5-androsten-3 beta-ol and (20 R + S)-20-amino-5-pregnen-3 beta-ol, were found to be only very weak inhibitors (I50 greater than 100 microM) and did not produce the 422 nm spectral form when bound. Derivatives in which the amine was attached a greater distance from the steroid ring, 24-amino-5-cholen-3 beta-ol and 25-amino-26,27-bisnor-5-cholesten-3 beta-ol, caused a progressive decrease in inhibitory potency and a failure to produce the 422 nm form on binding. The dependence of the type of interaction of these amino-steroids with P-450scc upon the amine position establishes that the steroid binding site and the heme catalytic site of the enzyme are fixed within a specific distance of one another. The heme appears to be located sufficiently close to the position that the side chain of cholesterol would occupy to allow for direct attack of an iron-bound oxidant to occur during hydroxylation and side chain cleavage.  相似文献   

6.
This study examined the kinetics of sterol desorption from monolayer and small unilamellar vesicle membranes to 2-hydroxypropyl-beta-cyclodextrin. The sterols used include cholesterol, dehydroergosterol (ergosta-5,7,9,(11),22-tetraen-3beta-ol) and cholestatrienol (cholesta-5,7,9,(11)-trien-3beta-ol). Desorption rates of dehydroergosterol and cholestatrienol from pure sterol monolayers were faster (3.3-4.6-fold) than the rate measured for cholesterol. In mixed monolayers (sterol: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 30:70 mol%), both dehydroergosterol and cholestatrienol desorbed faster than cholesterol. clearly indicating a difference in interfacial behavior of these sterols. In vesicle membranes desorption of dehydroergosterol was slower than desorption of cholestatrienol, and both rates were markedly affected by the phospholipid composition. Desorption of sterols was slower from sphingomyelin as compared to phosphatidylcholine vesicles. Desorption of fluorescent sterols was also faster from vesicles prepared by ethanol-injection as compared to extruded vesicles. The results of this study suggest that dehydroergosterol and cholestatrienol differ from cholesterol in their membrane behavior, therefore care should be exercised when experimental data derived with these probes are interpreted.  相似文献   

7.
Caenorhabditis elegans possesses a unique sterol methylation pathway not reported to occur in any other organism and also removes the C-24 ethyl group of sitosterol (a plant sterol). This nematode produced substantial quantities of 4 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol and smaller amounts of lophenol from dietary cholesterol, desmosterol or sitosterol. When C. elegans was propagated in media containing sitosterol plus 25-azacoprostane hydrochloride (25-aza-5 beta-cholestane hydrochloride), an inhibitor of delta 24-sterol reductase in insects, its 4 alpha-methylsterol fraction largely consisted of equal amounts of 4 alpha-methyl-5 alpha-cholesta-7,24-dien-3 beta-ol and 4 alpha-methyl-5 alpha-cholesta-8(14),24-dien-3 beta-ol. Thus 25-azacoprostane hydrochloride inhibited both a delta 24-sterol reductase and a delta 7-sterol isomerase in C. elegans.  相似文献   

8.
Chinese hamster ovary-215 (CHO-215) mutant cells are auxotrophic for cholesterol. Berry and Chang (Berry, D. J., and Chang, T. Y. (1982) Biochemistry 21, 573-580) suggested that the metabolic lesion was at the level of 4-methyl sterol oxidation. However, the observed cellular accumulation of lanosterol was not consistent with a defect at this metabolic site. With the use of a novel Silica Sep Pak sterol separation procedure, we demonstrated that 60-80% of the acetonesoluble lipid radioactivity in [5-3H]mevalonate-labeled CHO-215 cells was incorporated into acidic sterols. 7(8),Cholesten-4 beta-methyl,4 alpha-carboxy,3 beta-ol was the dominant end product. In addition to this acidic sterol, 7(8),24-cholestadien,4 beta-methyl,4 alpha-carboxy,3 beta-ol and 7(8),24-cholestadien,4 alpha-carboxy,3 beta-ol were also isolated. Incubation of cell-free extracts with [3H]7(8)-cholesten-4 beta-methyl, 4 alpha-carboxy,3 beta-ol and pyridine nucleotides confirmed that CHO-215 4-carboxysterol decarboxylase activity was less than 1% of that for wild type cells. Thus, a correspondence between decreased 4-carboxysterol decarboxylase activity and the spectrum of accumulated sterol products by intact CHO-215 cells was demonstrated. No detectable cholesterol was synthesized by CHO-215 cells. 3H-Product accumulation studies demonstrated that 7(8),24-cholestadien, 4 beta-methyl,4 alpha-carboxy,3 beta-ol increased prior to its subsequent saturation at the delta 24 carbon. Furthermore, the steady state ratio for delta 24-saturated acidic sterols/unsaturated acidic sterols was dependent on media cholesterol source and amount. Finally, the accumulated acidic sterol(s) were not regulatory signal molecules for the modulation of 3-hydroxy-3-methyl-glutaryl coenzyme. A reductase activity in response to cholesterol availability.  相似文献   

9.
The products of biotransformation by Nocardia erythropolis-402 of the microbial sterol ergosta-7,22-dien-3 beta-ol isolated from a Saccharomyces cerevisiae mutant were studied. The products were identified as ergosta-7,22-dien-3-one and ergosta-7,22-dien-17 alpha-ol-3-one by thin-layer chromatography, UV-spectrophotometry and mass-spectroscopy. It was found that the existence of 7-8 double bond slowed down the cleavage of the sterol side chain. The absence of 5-6 double bond prevents the formation of delta 4-3-ketosystem of coupled bonds.  相似文献   

10.
If the biological conversion of cholest-7-en-3beta-ol (I) into cholesterol (IV) occurred thorugh the intermediacy of cholest-7-ene-3beta,5alpha-diol (II) then the factor(s) adversely affecting the convwesion of the 5alpha-hydroxy sterol (II) into cholesterol must at least equally adversely affect the formation of cholesterol from cholest-7-en-3beta-ol. By using partial denaturation techniquws and dual-labelled precursors it was shown that the enzyme system responsible for the conversion of the 5alpha-hydroxy sterol (II) into cholesterol denatured faster than that for the corresponding conversion from cholest-7-en-3beta-ol (I).  相似文献   

11.
A trisulfated derivative of 24,25,26,26-tetramethyl-5 alpha-cholest-23E-ene-2 alpha, 3 beta, 6 alpha-triol (sokotrasterol sulfate) has been isolated from the sponge Halichondriidae gen. sp., collected near Sokotra Island (Arabian Sea), and its structure has been elucidated. The side chain of the new steroid involves a "normal" alkylation at C-24 and the unprecedented addition of two extra methyl groups at C-26 and one extra methyl group at C-25. A free sterol fraction contained only 24-isopropyl-5-cholesten-3 beta-ol and 24-isopropyl-5, 22E-cholestadien-3 beta-ol. 24-Isopropyl-5, 22E-cholestadien-3 beta-ol as sole monohydroxy sterol and halistanol sulfate as major polyhydroxylated steroid derivative have been detected in Halichondria sp., a Madagascar sponge.  相似文献   

12.
Low density lipoprotein (LDL) cholesterol is known to be oxidized both in vitro and in vivo giving rise to oxygenated sterols. Conflicting results, however, have been reported concerning both the nature and the relative concentrations of these compounds in oxidized human LDL. We examined the extracts obtained from Cu(2+)-oxidized LDL. Thin layer chromatography analysis showed that the sterol mixture became more complex with reaction time. Analysis of the components by thin layer chromatography and mass spectrometry allowed to establish that 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha OOH and beta OOH) are largely prevalent among the oxysterols at early times of oxidation. These hydroperoxy derivatives have not been previously identified in oxidized LDL. The concentration of 7-hydroperoxycholest-5-en-3 beta-ol decreased with oxidation time with a concomitant increase of cholest-5-en-3 beta, 7 alpha-diol (7 alpha OH), cholest-5-en-3 beta, 7 beta-diol (7 beta OH), cholesta-3,5-dien-7-one (CD) and cholest-5-en-3 beta-ol-7-one (7CO). After 24 h of oxidation a minor component of the LDL sterols was cholestan-3 beta-ol-5,6-oxide (EP).  相似文献   

13.
The rate of oxidation of cholesterol and its analogues to pregnenolone (3beta-hydroxypregn-5-en-20-one) by various mitochondrial preparations was measured. Sterols with the cholest-5-en-3beta-ol ring system and saturated side chains of different lengths were converted into pregnenolone rat rates similar to that of cholesterol. This marked lack of mitochondrial specificity towards the steroid side chains is in direct contrast with the rat liver microsomal cholesterol 7alpha-hydroxylase, which has a high specificity for the side chain. Steroids that retain the ring system, but contain hydroxyl groups at various points in the side chain, are converted into pregnenolone at rates three to eight times higher than in cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol.  相似文献   

14.
15.
The effect of low concentrations of a specifically designed sterol-24-transmethylase inhibitor, 25-aza-24, 25-dihydrozymosterol (10) on sterol production in Saccharomyces cerevisiae was examined. The synthesis of cholesta-5,7,22,24-tetraen-3beta-ol (4), its 7,22,24 analog (15) and the 7,24 analog (5) coupled with the availability of zymosterol (6) and cholesta-5,7,24-3beta-ol (3) derivatives facilitated a search for these sterols in cultures treated with this inhibitor. When S. cerevisiae was grown in the presence of 1.3 and 5 muM 10, it produced no ergosterol but accumulated zymosterol (6), cholesta-5,7,22,24-tetraen-3beta-ol (4) and related C27 sterols (3 and 5). These results indicate blockage of the side chain methylation that normally occurs during the biosynthesis of ergosterol in yeast by compound 10 is efficient. The cholesta-5,7,22,24-tetraen-3beta-ol is a close structural analog of provitamin D3 (7-dehydrocholesterol). The inhibited yeast thus provides a source of a potentially new provitamin D3 substitute.  相似文献   

16.
Zymosterol is located in the plasma membrane of cultured human fibroblasts   总被引:2,自引:0,他引:2  
Zymosterol (5 alpha-cholesta-8(9),24-dien-3 beta-ol) comprised a negligible fraction of the mass of sterol in cultured human fibroblasts but was well labeled biosynthetically with radioactive acetate. Treatment of cells with triparanol, a potent inhibitor of sterol delta 24-reductase, led to a marked increase in labeled zymosterol while its mass rose to 1 mol% of total sterol. All of this sterol could be chased into cholesterol. Furthermore, cell homogenates converted exogenous radiolabeled zymosterol to cholesterol. Three lines of evidence suggested that biosynthetically labeled zymosterol was associated with the plasma membrane. 1) About 80% of radiolabeled zymosterol was oxidized by the impermeant enzyme, cholesterol oxidase, in glutaraldehyde-fixed intact cells. 2) Sucrose density gradient analysis of homogenates showed that the equilibrium buoyant density profile of newly synthesized zymosterol was identical with that of the plasma membrane. 3) Newly synthesized zymosterol was transferred as readily from fixed intact fibroblasts to exogenous acceptors as was cholesterol. Given that cholesterol is synthesized within the cell, it is unclear why most of the zymosterol is in the plasma membrane. The pathway of cholesterol biosynthesis may compel zymosterol to flux through the plasma membrane. Alternatively, plasma membrane zymosterol may represent a separate pool, in equilibrium with the zymosterol in the intracellular biosynthetic pool.  相似文献   

17.
In order to measure the distribution of radioactivity present in the side chain of [24,25-3H]cholesterol prepared by a sequence involving catalytic tritiation of 3 alpha, 5 alpha-cyclocholest-24-en-6 beta-ol 6-methyl ether, the cholesterol was oxidized to 4-cholesten-3-one, which was then cleaved between C-24 and C-25 to afford the C24 alcohol. Oxidation to the corresponding cholenoic acid, followed by alkali equilibration and esterification completed the sequence. It was found that about 20% of the tritium in the labeled cholesterol is not lost when this tracer is physiologically converted to bile acids. Consequently, measurements of bile acid formation using this tracer must be corrected upward by this amount.  相似文献   

18.
The effect of the length of the side chain of sterols on their interaction with phosphatidylcholine was studied by measuring the permeability properties of liposomes constituted with sterol analogues with side chains of various lengths. The sensitivities of liposomes constituted with these sterol analogues toward digitonin and polyene antibiotics were also examined.The effects of sterols on phase transition of phosphatidylcholine were examined by measuring their effects on permeability increase due to perturbation of phase equilibrium and by differential scanning calorimetry. An analogue with a short side chain, isopropyl (C-22), had a very similar effect to cholesterol in suppressing the permeability increase, suggesting that the full length of the side chain is not necessary for this effect.The permeability of egg yolk phosphatidylcholine at 42°C was suppressed as much by the analogue C-22 as by cholesterol. Androstene-3-β-ol, an analogue without a side chain, however, had little suppressive effect. Thus it is concluded that the condensing effect of sterol requires a side chain, but not the full length of side chain.Liposomes constituted with analogues having a side chain with more than 5 carbon atoms showed maximum reactivity with a polyene antibiotic, amphotericin B, whereas those constituted with analogues having a side chain with less than 4 carbon atoms showed weaker reactivity. These findings indicate that a side chain with more than 5 carbon atoms is essential for the maximum interaction of liposomes with amphotericin B. Unlike amphotericin B, filipin reacted almost equally well with liposomes containing C-22 and with those containing cholesterol. Thus the chain length of the side chain of sterol is less important for interaction of liposomes with filipin than for their interaction with amphotericin B.Liposomes containing analogues having a side chain with more than 6 carbon atoms showed maximum reactivity with digitonin. Thus for the maximum interaction of liposomes with digitonin, the side chain of sterol should be longer than 6 carbon atoms.  相似文献   

19.
T A Kamilova  T V Ekhvalova 《Genetika》1989,25(9):1705-1707
The strains of Saccharomyces cerevisiae yeast with mutations in two genes NYS3 NYS4 were obtained by tetrad analysis. Sterol fraction of these mutants contains two sterols: ergosta-7-en-3 beta-ol (fungisterol) and ergosta-7,24-dien-3 beta-ol (episterol). The findings allowed to testify the sequence of the ergosterol biosynthesis reactions. Dehydrogenization of the sterol nucleus in C5(6) which is controlled by gene NYS3 occurs simultaneously with the introduction of double bond in C22(23) site of the side chain regulated by gene NYS4.  相似文献   

20.
The synthetic inhibitors of sterol biosynthesis, 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one and 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one, are of interest as potential cholesterol lowering drugs. Rapid metabolism of synthetic 15-ketosterols may lead to a decrease, or loss, of their potency to affect lipid metabolism. 3beta-Hydroxy-5alpha-cholest-8(14)-en-15-one is reported to be rapidly side chain oxygenated by rat liver mitochondria. In an attempt to reduce this metabolism, the novel side chain modified 15-ketosterol 3beta-Hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one was synthesized. We have examined the metabolism by recombinant human CYP27A1 of this novel side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one and compared the rate of metabolism with that of the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. Both sterols were found to be efficiently metabolized by recombinant human CYP27A1. None of the two 15-ketosterols was significantly metabolized by microsomal 7alpha-hydroxylation. Interestingly, CYP27A1-mediated product formation was much lower with the side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one than with the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. A surprising finding was that this novel side chain modified sterol was metabolized mainly in the C-28 position by CYP27A1. The data on 28-hydroxylation by human CYP27A1 provide new insights on the catalytic properties and substrate specificity of this enzyme. The finding that 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one with a modified side chain is metabolized at a dramatically slower rate than the previously described 15-ketosterol with unmodified side chain may be important for future development of synthetic cholesterol lowering sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号