首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CDP-diglyceride:inositol transferase in endoplasmic reticulum fractions from castor bean (Ricinus communis) endosperm was partially characterized. The enzyme had a pH optimum of 8.5 and required Mn2+ for activity. Maximal activity was at 1.5 millimolar MnCl2. A Km of 0.30 mM was calculated for myo-inositol and 1.35 millimolar was estimated for CDP-dipalmitoylglyceride. Concentrations of CDP-dipalmitoylglyceride above 1.2 millimolar inhibited the enzyme. A deoxycholate concentration of 0.1% (w/v) stimulated the reaction slightly while Triton X-100 inhibited at all concentrations tested. Some incorporation of myo-inositol into phosphatidylinositol occurred in the absence of CDP-diglyceride.  相似文献   

2.
The N-acetylglucosamine (GlcNAc) transferase that catalyzes the formation of dolichyl-pyrophosphoryl-GlcNAc-GlcNAc from UDP-GlcNAc and dolichyl-pyrophosphoryl-GlcNAc was solubilized from the microsomal enzyme fraction of mung beans with 1.5% Triton X-100, and was purified 140-fold on columns of DE-52 and hydroxylapatite. The partially purified enzyme preparation was quite stable when stored in 20% glycerol and 0.5 millimolar dithiothreitol, and was free of GlcNAc-1-P transferase and mannosyl transferases. The GlcNAc transferase had a sharp pH optimum of 7.4 to 7.6 and the Km for dolichyl-pyrophosphoryl-GlcNAc was 2.2 micromolar and that for UDP-GlcNAc, 0.25 micromolar. The enzyme showed a strong requirement for the detergent Triton X-100 and was stimulated somewhat by the divalent cation Mg2+. Uridine nucleotides, especially UDP and UDP-glucose inhibited the enzyme as did the antibiotic, diumycin. However, a variety of other antibiotics including tunicamycin were without effect. The product of the reaction was characterized as dolichyl-pyrophosphoryl-GlcNAc-GlcNAc.  相似文献   

3.
Wissing J  Heim S  Wagner KG 《Plant physiology》1989,90(4):1546-1551
Diacylglycerol kinase (ATP:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107) from suspension-cultured Catharanthus roseus cells was extracted from a membrane fraction with 0.6% Triton X-100 and 150 millimolar NaCl and was purified about 900-fold by DEAE-cellulose, blue Sepharose, gel permeation, and phenyl-Sepharose chromatography. The enzyme is obviously membrane bound as activity in the cytosol could not be detected. In the presence of detergents such as Triton X-100 (3-[3-cholamidopropyl]dimethylamino)-1-propanesulfonate (Chaps), or deoxycholate, a molecular weight of about 250,000 was determined by gel filtration. In glycerol density gradients, the enzyme sedimented slightly more slowly than bovine serum albumin, indicating a molecular weight of less than 68,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzyme activity could be assigned to a protein of 51,000 daltons. As found previously for bacterial and animal diacylglycerol kinases, the purified enzyme was completely devoid of activity without the addition of phospholipids or deoxycholate. Cardiolipin was found to be most effective, whereas higher amounts of detergent were inhibitory. The enzyme needs divalent cations for activity, with Mg2+ ions being the most effective. Apparent Km values for ATP and diacylglycerol were determined as 100 and 250 micromolar, respectively.  相似文献   

4.
Bensen RJ  Warner HR 《Plant physiology》1987,84(4):1102-1106
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.  相似文献   

5.
UDP-glucose:dolichylphosphate glucosyltransferase has been purified 734-fold from Triton X-100 solubilized mung bean (Phaseolus aureus) microsomes. The partially purified enzyme has broad pH optima of activity from 6.0 to 7.0 and is maximally stimulated with 10 millimolar MgCl2. The Km for UDP-glucose was determined as 27 micromolar, and the Km for dolichol-P was 2 micromolar. Using the UDP-glucose photoaffinity analog, 5-azido-UDP-glucose, a polypeptide of 39 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels was identified as the catalytic subunit of the enzyme. Photoinsertion into this 39-kilodalton polypeptide with [32P]5-azido-UDP-glucose was saturable, and was maximally protected with the native substrate UDP-glucose. 5-Azido-UDP-glucose behaves competitively with UDP-glucose in enzyme assays, and upon photolysis inhibits activity in proportion to its concentration. This study represents the first subunit identification of a plant glycosyltransferase involved in the biosynthesis of the lipid-linked oligosaccharides that are precursors of N-linked glycoproteins.  相似文献   

6.
Yeast App1p is a phosphatidate phosphatase (PAP) that associates with endocytic proteins at cortical actin patches. App1p, which catalyzes the conversion of phosphatidate (PA) to diacylglycerol, is unique among Mg2+-dependent PAP enzymes in that its reaction is not involved with de novo lipid synthesis. Instead, App1p PAP is thought to play a role in endocytosis because its substrate and product facilitate membrane fission/fusion events and regulate enzymes that govern vesicular movement. App1p PAP was purified from yeast and characterized with respect to its enzymological, kinetic, and regulatory properties. Maximum PAP activity was dependent on Triton X-100 (20 mm), PA (2 mm), Mg2+ (0.5 mm), and 2-mercaptoethanol (10 mm) at pH 7.5 and 30 °C. Analysis of surface dilution kinetics with Triton X-100/PA-mixed micelles yielded constants for surface binding (KsA = 11 mm), interfacial PA binding (KmB = 4.2 mol %), and catalytic efficiency (Vmax = 557 μmol/min/mg). The activation energy, turnover number, and equilibrium constant were 16.5 kcal/mol, 406 s−1, and 16.2, respectively. PAP activity was stimulated by anionic lipids (cardiolipin, phosphatidylglycerol, phosphatidylserine, and CDP-diacylglycerol) and inhibited by zwitterionic (phosphatidylcholine and phosphatidylethanolamine) and cationic (sphinganine) lipids, nucleotides (ATP and CTP), N-ethylmaleimide, propranolol, phenylglyoxal, and divalent cations (Ca2+, Mn2+, and Zn2+). App1p also utilized diacylglycerol pyrophosphate and lyso-PA as substrates with specificity constants 4- and 7-fold lower, respectively, when compared with PA.  相似文献   

7.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

8.
Chlordane, dieldrin, piperonyl butoxide, and benzpyrene, which induce the hepatic microsomal mixed function oxidases and UDP glucuronyltransferases, decreased activity of smooth and rough endoplasmic reticulum β-glucuronidase. The reduction occurred when either p-nitrophenyl β-D-glucuronide or phenolphthalein mono-β-glucuronide was used as the substrate. Chlordane or dieldrin pretreatment of rats for 3 days resulted in a 2.5-fold reduction in endoplasmic reticulum activity while the reduction was less for piperonyl butoxide or benzpyrene. On the other hand, aminopyrine demethylase and UDP glucuronyltransferase were increased 2-fold by chlordane or dieldrin pretreatments. Decreases in microsomal β-glucuronidase activity might be directly or indirectly involved in the induction process since decreases in β-glucuronidase activity are quantitatively similar to increases in activity of the drug-metabolizing enzymes. Lysosomal β-glucuronidase also decreased following pretreatment of rats with inducing agents, but the reduction was less than that observed in the endoplasmic reticulum fractions. Analysis of pH optima, temperature optima, Km values, heat denaturation data, and effects of Triton X-100 on activities of various liver fractions suggests that β-glucuronidase from the endoplasmic reticulum and lysosomes have similar properties.  相似文献   

9.
A Calcium-Activated Phytase from Pollen of Lilium longiflorum   总被引:3,自引:2,他引:1       下载免费PDF全文
A phytase was isolated and partially purified from the pollen of Lilium longiflorum Thumb. Optimum activity was at pH 8.0. The phytase was activated by Ca2+ and Sr2+ but not by the other divalent cations tested. Activity was inhibited by ethylenediaminetetraacetate. The phytase had a temperature optimum of 55 to 60°C and an activation energy of about 12,700 calories/mole. Extraction of L. longiflorum pollen with 0.1% Triton X-100 increased recovery of the phytase by nearly 4-fold. The phytase had a molecular weight of about 88,000 as determined by gel filtration chromatography and a Km value of 7.2 micromolar for phytic acid in the presence of Ca2+.  相似文献   

10.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

11.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

12.
Thiamin:ATP pyrophosphotransferase (EC2.7.6.2) activity from soybean (Merr.) seedlings grown for 48 hours was determined by measuring the rate of [2-14C]thiamin incorporation into thiamin pyrophosphate. With partially purified (11-fold) enzyme, optimal activity occurred between pH 7.1 and 7.3, depending on the buffer system that was used. Assays were routinely conducted at a final pH of 8.1 in order to minimize interference from competing reactions. Enzyme activity required the presence of a divalent cation, and a number of nucleoside triphosphates proved to be active as pyrophosphate donors. Apparent Km values of 18.3 millimolar and 4.64 micromolar were obtained for Mg·ATP and thiamin, respectively. Among the compounds tested, pyrithiamin and thiamin pyrophosphate were most effective in inhibiting thiamin pyrophosphotransferase activity. Based on Sephadex G-100 gel filtration, soybean thiamin pyrophosphotransferase has a molecular weight of 49,000.  相似文献   

13.
12-Oxo-phytodienoic acid reductase, an enzyme of the biosynthetic pathway that converts linolenic acid to jasmonic acid, has been characterized from the kernel and seedlings of corn (Zea mays L.). The molecular weight of the enzyme, estimated by gel filtration, was 54,000. Optimum enzyme activity was observed over a broad pH range, from pH 6.8 to 9.0. The enzyme had a Km of 190 micromolar for its substrate, 12-oxo-phytodienoic acid. The preferred reductant was NADPH, for which the enzyme exhibited a Km of 13 micromolar, compared with 4.2 millimolar for NADH. Reductase activity was low in the corn kernel but increased five-fold by the fifth day after germination and then gradually declined.  相似文献   

14.
Phosphatidylethanolamine synthesis in castor bean endosperm   总被引:4,自引:2,他引:2       下载免费PDF全文
Phosphatidylethanolamine synthesis by CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) from the endoplasmic reticulum of castor bean (Ricinus communis L. var. Hale) endosperm was characterized. The Michaelis-Menten constant of the enzyme for CDP-ethanolamine was approximately 8.0 micromolar. The pH optimum was 6.5 and a divalent cation was an absolute requirement for activity, with Mg2+ giving the greatest stimulation at 3 millimolar. Sulfhydryl reagents variously affected enzyme activity. No discernible differences were detected between the responses of the ethanolaminephosphotransferase and CDP-choline:1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) to a variety of treatments. CDP-choline and CDP-ethanolamine were competitive inhibitors of the ethanolaminephosphotransferase and cholinephosphotransferase reactions, respectively.  相似文献   

15.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

16.
The kinetic properties of membrane-bound and Triton X-100-solubilized human brain mitochondrial type A and B monoamine oxidase were examined. These studies reveal that the Km values for phenylethylamine and benzylamine, type B monoamine oxidase substrates, were only slightly increased by the solubilization procedure. The Km value for 5-hydroxytryptamine, a type A monoamine oxidase substrate, was similarly increased by treatment with Triton X-100. The Km values for oxygen with all three amine substrates were unaffected by solubilization of the oxidase. Similarly, the optimum pH for deamination of substrates for the B isoenzyme was essentially unaltered in the solubilized preparation as compared to the membrane-bound enzyme whereas that for 5-hydroxytryptamine metabolism was decreased from pH 8.5 to approximately 7.75 on solubilization. The energy of activation with all three substrates was altered on solubilization of the oxidases with Triton X-100. The energy of activation for the B monoamine oxidase substrates increased whereas that for 5-hydroxytryptamine decreased. These data support the contention that the lipid environment surrounding the two forms of monoamine oxidase controls, in part, the activity and kinetic properties of the enzymes.  相似文献   

17.
1. Cerebral-cortex mitochondria, after purification by using high-density sucrose solutions, were extracted with Triton X-100. The total hexokinase activity of the intact mitochondria was increased by 50–80% in the Triton extracts. 2. Triton X-100 was removed from mitochondrial extracts by a combination of ammonium sulphate fractionation and DEAE-cellulose chromatography. Mitochondrial hexokinase remained soluble after removal of extractant. 3. The behaviour of solubilized mitochondrial hexokinase was compared with soluble cytoplasmic hexokinase from the same samples of cerebral cortex on identical columns of DEAE-cellulose. Two peaks were eluted from each source of hexokinase. The distribution between hexokinase peaks was similar for the two sources. Peak I (approx. 80% of the total hexokinase) from each was eluted at identical concentrations of potassium chloride and slight differences were observed in the elution profiles for peak II. 4. The purified mitochondrial hexokinase showed the following kinetic properties: peak I, Km(ATP) 0.60mm, Km(glucose) 0.042mm; peak II, Km(ATP) 0.66mm, Km(glucose) 0.043mm. The purified cytoplasmic hexokinase Michaelis constants were: peak I, Km(ATP) 0.56mm, Km(glucose) 0.048mm; peak II, Km(ATP) 0.68mm, Km(glucose) 0.062mm. 5. Although no significant differences between mitochondrial and cytoplasmic hexokinases were noted in chromatographic behaviour or in the kinetic properties studied, the purified mitochondrial enzyme was activated slightly (approx. 20%) by Triton X-100, in contrast with the cytoplasmic enzyme, which was not affected. 6. The results, taken to indicate basic similarity between mitochondrial and cytoplasmic hexokinases, are discussed in relation to the role of the two sources of enzyme in the metabolism of the tissue.  相似文献   

18.
Sucrose synthase of soybean nodules   总被引:6,自引:6,他引:0  
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

19.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

20.
Doehlert DC 《Plant physiology》1989,89(4):1042-1048
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose and are classified as fructokinases (EC 2.7.1.4). All hexose kinases analyzed had broad pH optima between 7.5 and 9.5 with optimal activity at pH 8.5. The two glucokinases differed in substrate affinities. One form had low Km values [Km(glucose) = 117 micromolar, Km(ATP) = 66 micromolar] whereas the other form had much higher Km values [Km(glucose) = 750 micromolar, Km(ATP) = 182 micromolar]. Both fructokinases had similar substrate saturation responses. The Km(fructose) was about 130 micromolar and the Km(ATP) was about 700 micromolar. Both exhibited uncompetitive substrate inhibition by fructose [Ki(fructose) = 1.40 to 2.00 millimolar]. ADP inhibited all four hexose kinase activities, whereas sugar phosphates had little effect on their activities. The data suggest that substrate concentrations are an important factor controlling hexose kinase activity in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号