首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amine N-methyltransferases from rabbit liver   总被引:2,自引:0,他引:2  
N-Methylation of amines has been ascribed to enzymes listed as amine N-methyltransferase, indolethylamine N-methyltransferase, and arylamine N-methyltransferase. All of these activities are accomplished by each of two related enzymes present in rabbit liver. The two N-methyltransferases have a very broad and overlapping specificity for primary and secondary amines. Both have a molecular mass of 30,000 daltons and react with an antibody formed to one of them, but have different isoelectric points.  相似文献   

2.
We have developed a liquid chromatographic method which uses electrochemical detection for the simultaneous quantitation of histamine and N tau-methylhistamine in rat brain. The amines are derivatized with the water-soluble Bolton-Hunter reagent (sulfo B-H). Perchloric acid extracts of rat brains are chromatographed on a strong cation-exchange resin. The eluate is evaporated and allowed to react with sulfo B-H at pH 9.8 at room temperature. The derivatization is complete after 30 s vortexing. The derivatives are purified using a cellulose-phosphate fibrous cation exchanger. They are quantified with an electrochemical detector at a potential of 0.56 V after preoxidizing the sample at 0.47 V. The derivatives of histamine, N tau-methylhistamine, and N alpha-methylhistamine are completely separated without interfering peaks. Since no N alpha-methylhistamine was detected in rat brain it was used as an internal standard. The detection limits are 0.1 pmol of histamine and 0.2 pmol of N tau-methylhistamine. The precision of this method is high, with within-run and between-run coefficients of variation of 2-7% and linearity of 0.999. Both histamine and N tau-methylhistamine peak heights increased significantly and selectively after treatment with pargyline. Because of the high sensitivity, accuracy, and precision, the histamine and N tau-methylhistamine contents of single nuclei of the rat hypothalamus can be routinely quantified.  相似文献   

3.
Histamine plays important roles in gastric acid secretion, inflammation, and allergic response. Histamine N-methyltransferase (HMT; EC 2.1.1.8) is crucial to the inactivation of histamine in tissues. In this study we investigated the immunohistochemical localization of this enzyme in guinea pig tissues using a rabbit polyclonal antibody against bovine HMT. The specificity of the antibody for guinea pig HMT was confirmed by Western blotting and the lack of any staining using antiserum preabsorbed with purified HMT. There was strong HMT-like immunoreactivity (HMT-LI) in the epithelial cells in the gastrointestinal tract, especially in the gastric body, duodenum, and jejunum. The columnar epithelium in the gallbladder was also strongly positive. Almost all the myenteric plexus from the stomach to the colon was stained whereas the submucous plexus was not. Other strongly immunoreactive cells included the ciliated cells in the trachea and the transitional epithelium of the bladder. Intermediately immunoreactive cells included islets of Langerhans, epidermal cells of the skin, alveolar cells in the lung, urinary tubules in the kidney, and epithelium of semiferous tubules. HMT-LI was present in specific structures in the guinea pig tissues. The widespread distribution of HMT-LI suggests that histamine has several roles in different tissues.  相似文献   

4.
A simple nonradioisotopic fluorescent method for assay of histamine N-methyltransferase (HMT) activity was developed. After termination of the HMT reaction, the remaining excess substrate, histamine, was degraded by Pauly 's diazo reagent, whereas the product, N tau-methylhistamine (N- MeHA ), was not degraded by the reagent. Then the mixture was applied to high-performance liquid chromatography under conditions in which N- MeHA was not separated from histamine, and N- MeHA was measured fluorometrically by condensation with o-phthalaldehyde. The method would be convenient for measurement of HMT activity during enzyme purification.  相似文献   

5.
Indolethylamine N-methyltransferase (INMT) catalyzes the N-methylation of tryptamine and structurally related compounds. We recently cloned and characterized the rabbit INMT cDNA and gene as a step toward cloning the cDNA and gene for this enzyme in humans. We have now used a PCR-based approach to clone a human INMT cDNA that had a 792-bp open reading frame that encoded a 263-amino-acid protein 88% identical in sequence to rabbit INMT. Northern blot analysis of 35 tissues showed that a 2.7-kb INMT mRNA species was expressed in most tissues. When the cDNA was expressed in COS-1 cells, the recombinant enzyme catalyzed the methylation of tryptamine with an apparent K(m) value of 2.9 mM. The human cDNA was then used to clone the human INMT gene from a human genomic BAC library. The gene was 5471 bp in length, consisted of three exons, and was structurally similar to the rabbit INMT gene as well as genes for nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase in several species. All INMT exon-intron splice junctions conformed to the "GT-AG" rule, and no canonical TATA or CAAT sequences were present within the 5'-flanking region of the gene. Human INMT mapped to chromosome 7p15.2-p15.3 on the basis of both PCR analysis and fluorescence in situ hybridization. Finally, two possible single nucleotide polymorphisms were identified within exon 3, both of which altered the encoded amino acid. The cloning and expression of a human INMT cDNA, as well as the cloning, structural characterization, and mapping of its gene represent steps toward future studies of the function and regulation of this methyltransferase enzyme in humans.  相似文献   

6.
A simple derivative of histamine, alpha-methylhistamine i.e. 4-(2-aminopropyl)-imidazole, was shown to potently inhibit the K+-induced release of [3H] histamine from slices of rat cerebral cortex previously incubated in the presence of [3H] histidine. The maximal inhibition elicited by alpha-methylhistamine was of about 60% i.e. similar to that elicited by exogenous histamine. The effect occurred with an EC50 value of 4.3 +/- 1.1 X 10(-9) M about 10 times lower than that of histamine and was reversed by a H3-receptor antagonist. Since alpha-methylhistamine is known to display negligible potency at H1- and H2-receptors, this compound appears to be the first highly potent and selective H3-receptor agonist to be identified.  相似文献   

7.
Inactivation of histamine by gastric mucosal tissue was examined in dispersed rabbit gastric mucosal cells. Mucosal cells were incubated with [14C]histamine. The formed radioactive metabolites were separated and identified by thin layer co-chromatography and quantitated, in both the cellular and extracellular mediums. Gastric mucosal cells internalized histamine, most of which was immediately methylated primarily to N tau-methylhistamine and released. Cellular histamine product accumulation reached a plateau. The rate of histamine methylation increased with increasing extracellular histamine concentration, moving towards a plateau above 5 microM. Histamine methylation was greatly decreased but not abolished at 4 degrees C, in the absence of Na+ and by phlorizin (0.5 mM), an inhibitor of Na(+)-dependent co-transport. Inhibition of histamine N-methyltransferase decreased intracellular methylhistamine content dose dependently without increasing intracellular histamine. The secretagogues pentagastrin and carbachol did not influence histamine metabolism but ethanol inhibited methylation. The data suggest that gastric mucosal cells take up histamine by a Na(+)-dependent and Na(+)-independent process. The histamine uptake capacity appears to be linked to the methylation activity within the cell. The decrease in histamine uptake and metabolism caused by ethanol could potentially increase histamine concentrations near the target cells and be the reason for the stimulatory effect of ethanol on acid secretion.  相似文献   

8.
Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.  相似文献   

9.
After pretreatment with pheniprazine, rabbits were administered C-14-tryptamine i.v. and the lung was assayed for the N-methylated derivatives. Unoxidized tryptamine was present, but no N-methyl or N, N-dimethyltryptamine was found in this tissue, which contains high levels of N-methyltransferase. It appears that the indolamine-N-methyltransfer reaction is inhibited in the intact tissue. Our investigation of the possible inhibitory mechanism has led to the purification and characterization of a dialysable factor which inhibits the enzyme invitro. The factor, which is present in most tissues, was purified from newborn rabbit brain. It is present in two forms, one having approximate mol. wt. 1,500 and one mol. wt. 1,300. Both were inactivated by crystalline trypsin. The 1,300 form was digested by carboxypeptidase A to a smaller, but still active form. It is suggested that these peptides may control invivo the activity of the non-specific N-methyltransferase against tryptamine and serotonin.  相似文献   

10.
Complementary DNA clones encoding rat kidney histamine N-methyltransferase have been isolated using synthetic oligonucleotide probes based on partial amino acid sequences of tryptic peptides of the purified enzyme. The 1.3-kilobase cDNA consisted of a 5'-noncoding region of 8 nucleotides, a coding region of 885 nucleotides, and a 3'-noncoding region of 369 nucleotides. The encoded protein of 295 amino acid residues had a calculated molecular weight of 33,940.2. After introduction of a prokaryotic expression vector containing the isolated cDNA, Escherichia coli cells expressed histamine N-methyltransferase activity. The enzyme expressed in these cells was isolated and purified as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whose mobility was identical to the natural enzyme purified from rat kidney. The recombinant enzyme had Vmax and Km values for both histamine and S-adenosylmethionine identical to those of the natural enzyme. All of the inhibitors of the natural enzyme tested showed similar Ki values on both recombinant and natural enzyme.  相似文献   

11.
The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors.  相似文献   

12.
Incubation of N-methylserotonin (NMS) with erythrocyte hemolyzates and C14-S-adenosylmethionine (C14-SAM) leads to the formation of an unidentified product rather than the expected bufotenin. It is shown that this compound is a condensation product of NMS with C14-formaldehyde formed enzymatically from C14-SAM. Incubation of rabbit lung homogenates however, leads to formation of the expected product. Previous reports of N-methyltransferase activity in blood and perhaps other tissues should be re-evaluated in light of these findings, if rigorous proof of identity was not carried out.  相似文献   

13.
The enzymatic properties of glycine N-methyltransferase from rabbit liver and the effects of endogenous adenosine nucleosides, nucleotides and methyltransferase inhibitors were investigated using a photometrical assay to detect sarcosine with o-dianisidine as a dye. After isolation and purification the denatured enzyme showed a two-banded pattern by SDS-PAGE. The enzyme was highly specific for its substrates with a pH-optimum at pH 8.6. Glycine N-methyltransferase exhibits Michaelis-Menten kinetics for its substrates, S-adenosylmethionine and glycine, respectively. The apparent Km and Vmax values were determined for both the substrates, the other substrate being present at saturating concentrations. The enzyme was strongly inhibited in the presence of S-adenosylhomocysteine, 3-deazaadenosine, and 5'-S-isobutylthio-5'-deoxyadenosine. All other inhibitors investigated, adenosine, 2'-deoxyadenosine, aciclovir, and 5'-N-ethylcarboxamidoadenosine were poor inhibitors of the methylation reaction. Adenine nucleotides and vidarabin were without effect on the enzymatic activity. Based on the kinetic data glycine N-methyltransferase from rabbit liver exhibits appreciable activity at physiological S-adenosylmethionine and S-adenosylhomocysteine levels.  相似文献   

14.
Aminopeptidase N (APN), which is widely distributed in mammalian tissues, is able to cleave numerous regulatory peptides. The selective inhibitor of APN, [(125)I] RB129, has been used to study the distribution of this exopeptidase during rat prenatal development and adult life by in vitro whole-body autoradiography. In the central nervous system, APN shows a weak labeling compared to the major part of the non-nervous tissues in the embryo and in the adult. APN is progressively expressed in kidney, intestine, heart, lung, sensory organs, eye, and thymus. In organs such as the liver, the cartilages and the bones, altered levels of APN expression are observed during the development, or in the embryo compared to the adult, suggesting a role of APN during the liver haematopoiesis and bone growth. At this time, all the physiological functions of APN are still incompletely known, however its developmental pattern of expression strongly suggests a function of modulation of this enzyme during the development, next in physiological and/or pathological situations in adult. In this way, APN could represent a new therapeutic target in pathological processes, such as tumoral proliferation and/or angiogenesis associated with cancer development, where an increase in the level of this enzyme has been observed.  相似文献   

15.
Calmodulin N-methyltransferase. Partial purification and characterization   总被引:7,自引:0,他引:7  
The distribution, properties, and substrate specificity of S-adenosylmethionine:calmodulin (lysine) N-methyltransferse (EC 2.1.1.60, calmodulin N-methyltransferase) of the rat have been studied. This enzyme is cytosolic and is found at high levels in tissues with high levels of calmodulin and at low levels in tissues with little calmodulin. In liver, heart, and skeletal muscle, which have low levels of calmodulin and very low calmodulin N-methyltransferase activity (a low ratio of calmodulin N-methyltransferase to calmodulin), calmodulin was found to be incompletely methylated, as judged by its ability to act as a substrate for purified calmodulin N-methyltransferase. Calmodulin N-methyltransferase was purified 470-fold with a 33% yield from rat testis cytosol, using ammonium sulfate precipitation and chromatography on DEAE-cellulose, CM-Sepharose, and Sephadex G-100. At pH 7.4, calmodulin N-methyltransferase did not bind to DEAE-cellulose, but bound strongly to CM-Sepharose. The enzyme eluted from Sephadex G-100 with an apparent molecular weight of 55,000. Purified calmodulin N-methyltransferase was incubated with extracts of rat tissues, and [methyl-3H]AdoMet and methylated proteins were resolved by electrophoresis in an attempt to discover substances other than calmodulin, but this enzyme only catalyzed the methylation of calmodulin, indicating a high degree of substrate specificity. Conditions were established for the in vitro preparative methylation of des(methyl)-calmodulin from Dictyostelium discoideum. Three moles of methyl/mol of calmodulin were incorporated into lysine 115 of des(methyl)calmodulin, resulting in the formation of 1 mol of trimethyllysine at the site normally methylated in calmodulins from most species. Activation of cyclic nucleotide phosphodiesterase by des(methyl)calmodulin was indistinguishable from activation by in vitro methylated or sham methylated Dictyostelium calmodulin, indicating that methylation does not affect the ability of calmodulin to activate this enzyme.  相似文献   

16.
Abstract: The enzyme diamine oxidase (DAO) catalyzes the oxidative deamination of histamine, diamines, and polyamines. DAO has been localized to several tissues, including thymus, kidney, intestine, seminal vesicles, placenta, and pregnancy plasma. DAO is not constitutively expressed in the mammalian brain, but it becomes detectable following focal injury. Although the physiologic role of DAO remains unknown, the observation that it is present at the interface between rapidly dividing and quiescent cells in several tissues suggests that it might be involved in regulating cell division or differentiation at tissue boundaries. In addition, the observation that DAO is expressed in the brain following injury suggests that the protein might play a role in the CNS response to focal neuronal damage. To test that hypothesis, we assessed the ability of purified DAO to alter the pattern of neuronal differentiation and nerve growth in vitro. In chick dorsal root ganglion explant cultures, purified porcine DAO induced neurite outgrowth in the low nanomolar range. Addition of aminoguanidine, which inhibits DAO enzyme activity, did not inhibit the protein's neurotrophic activity. These findings suggest that DAO can function as a neurotrophic ligand independent of its enzymatic activity.  相似文献   

17.
Carbonic anhydrase (CA) IV was purified to homogeneity from rat lung microsomal and plasma membranes. The single N-terminal amino acid sequence showed 55% similarity to that reported for human CA IV. A monospecific antibody to the 39-kDa rat enzyme that cross-reacts on Western blots with CA IVs from other mammalian species was produced in rabbits. Digestion of rat lung enzyme with endoglycosidase (peptide-N-glycosidase F) reduced the Mr to 36,000, suggesting that rat CA contains one N-linked oligosaccharide chain. All of eight additional mammalian CA IVs that were examined also contained oligosaccharide chains, as evidenced by reduction in Mr from 52,000 (cow, sheep, and rabbit), 42,000 (pig, guinea pig, and dog), and 39,000 (mouse and hamster) to 36,000 after treatment of the respective lung microsomal membranes with peptide-N-glycosidase F. The 36-kDa human enzyme showed no change in molecular mass with this treatment. Thus, the human CA IV is the exceptional one in lacking carbohydrate. Rat lung CA IV was found to be relatively resistant to sodium dodecyl sulfate and to be anchored to membranes by a phosphatidylinositol-glycan linkage; both properties were found to be shared by other mammalian CA IVs. Western blot analysis indicated distribution of CA IV in rat tissues other than kidney and lung where it was previously known to be present. CA IV was particularly abundant in rat brain, muscle, heart, and liver, all locations where the CA IV enzyme was not known to be present previously. None was detected in rat skin or spleen.  相似文献   

18.
The fatty-acid primary amide, oleamide, is a novel signaling molecule whose mechanism of biosynthesis is unknown. Recently, the N(18)TG(2) cell line was shown to synthesize oleamide from oleic acid, thereby demonstrating that these cells contain the necessary catalytic activities for generating the fatty-acid primary amide. The ability of peptide alpha-amidating enzyme, peptidylglycine-alpha-amidating monooxygenase (PAM; EC 1.14.17.3), to catalyze the formation of oleamide from oleoylglycine in vitro suggests this as a function for the enzyme in vivo. This investigation shows that N(18)TG(2) cells, in fact, express PAM and that cellular differentiation dramatically increases this expression. PAM expression was confirmed by the detection of PAM mRNA, PAM protein, and enzymatic activity that exhibits the functional characteristics of PAM isolated from mammalian neuroendocrine tissues. The regulated expression of PAM in N(18)TG(2) cells is consistent with the proposed role of PAM in the biosynthesis of fatty-acid primary amides and further establishes this cell line as a model for studying the pathway.  相似文献   

19.
The interaction of histamine with an H1 receptor on human endothelial cells evokes production of the lipid mediator prostaglandin I2 (PGI2) and is accompanied by tachyphylaxis of this H1 receptor response (Baenziger, N. L., Fogerty, F. J., Mertz, L. F., and Chernuta, L. F. (1981) Cell 24, 915-923). We have explored the affected cells' capability for subsequent metabolic degradation of histamine molecules. Human vascular endothelial cells and skin fibroblasts exhibit a two-stage histamine degradation sequence whose participants are an enzyme native to the cells themselves and one provided from an extracellular source. Initially, the cells' endogenous histamine N-methyltransferase activity mediates conversion of cell-associated [3H]histamine to tele-methylhistamine with retention of this intermediate metabolite. Subsequently, in the presence of exogenous diamine oxidase derived from fetal calf serum or human placenta, cell-associated tele-methyl-histamine is further converted to the end product methylimidazoleacetic acid. After an initial lag phase lasting 3-6 min, the cell-associated radioactivity accumulates as methylimidazoleacetic acid at a linear rate substantially enhanced over that without diamine oxidase. The entire sequence is blocked by the histamine methyltransferase inhibitor homodimaprit. Accumulation of [3H]histamine metabolites by endothelial cells is saturable both with respect to exogenous diamine oxidase and to histamine. Thus this metabolic pathway is carried out at the level of the individual cell by means of binding sites or receptors for the substrate and for the distal degradative enzyme, diamine oxidase.  相似文献   

20.
Histidine decarboxylase, the synthetic enzyme for histamine, was partially purified from regions of rat or rabbit brain rich in the enzyme. The enzyme was purified using ion exchange and hydrophobic column chromatography and chromatofocusing. Approximately 70-fold and 110-fold enrichments were attained from rat and rabbit brain, respectively. Rat and rabbit brain histidine decarboxylase had isoelectric points of pH 5.4 and 5.6, Km values of 80 M and 120 M histidine and Vmax values of 210 and 625 pmol histamine formed/hr-mg protein, respectively. The partially purified histidine decarboxylase from both sources was dependent on pyridoxal phosphate for maximal activity and was inhibited by -fluoromethylhistidine, nickel chloride and cobaltous chloride but was not inhibited by impromidine, -methyldopa, DTNB, zinc chloride or mercuric chloride. The enzyme had a broad pH optimum between pH 7.2 and 8.0. These studies provide further information on the characteristics of mammalian histidine decarboxylase from brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号