首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with selectively 13C-enriched flavin mononucleotides and investigated by 13C NMR spectroscopy. The 13C NMR results confirm the results obtained by 15N NMR spectroscopy and yield additional information about the coenzyme-apoenzyme interaction. A strong deshielding of the C(2) and C(4) atoms of enzyme-bound FMN both in the oxidized and reduced state is observed, which is supposed to be induced by hydrogen-bond formation between the protein and the two carbonyl groups at C(2) and C(4) of the isoalloxazine ring system. The chemical shifts of all 13C resonances of the flavin in the two-electron-reduced state indicate that the N(5) atom is sp3-hybridized. From 31P NMR measurements it is concluded that the FMN phosphate group is not accessible to bulk solvent. The unusual 31P chemical shift of FMN in old yellow enzyme seems to indicate a different binding mode of the FMN phosphate group in this enzyme as compared to the flavodoxins. The 13C and 15N NMR data on the old-yellow-enzyme--phenolate complexes show that the atoms of the phenolate are more deshielded whereas the atoms of the enzyme-bound isoalloxazine ring are more shielded upon complexation. A non-linear correlation exists between the chemical shifts of the N(5) and the N(10) atoms and the pKa value of the phenolate derivative bound to the protein. Since the chemical shifts of N(5), N(10) and C(4a) are influenced most on complexation it is suggested that the phenolate is bound near the pyrazine ring of the isoalloxazine system. 15N NMR studies on the complex between FMN and 2-aminobenzoic acid indicate that the structure of this complex differs from that of the old-yellow-enzyme--phenolate complexes.  相似文献   

2.
The molecular mechanism of the combined action of antibiotic and vitamin was studied by NMR spectroscopy. The heteroassociation of the antitumor antibiotic actinomycin D and flavin mononucleotide was investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy. The equilibrium association constant, the thermodynamic parameters (deltaH, deltaS) of heteroassociation of actinomycin D with flavin mononucleotide, and the limiting values of proton chemical shifts in the heterocomplex were determined from the concentration and temperature dependences of proton chemical shifts of molecules. The most favorable structure of the 1:1 actinomycin D-flavin mononucleotide heteroassociation complex was determined using both the molecular mechanics methods (X-PLOR software) and the limiting values of proton chemical shifts of the molecules. In the calculated structure, the planes of the chromophores of actinomycin D and flavin mononucleotide molecules in the 1:1 heterocomplex are parallel and separated from each other by a distance of about 0.34 nm. At the same time, there is a probability of formation of intermolecular hydrogen bonds in the calculated structure of 1:1 actinomycin D-flavin mononucleotide complex. The analysis of the results obtained suggests that aromatic molecules of vitamins, e.g., flavin mononucleotide, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solution, modulating thereby the efficacy of their medical and biological action.  相似文献   

3.
The binding of oxidized flavin mononucleotide (FMN) to bacterial luciferase was studied by equilibrium dialysis. A Scatchard plot of the data indicates a single FMN binding site per luciferase molecule, with a dissociation constant of 2.4 × 10?4 M at 2° in 0.05 M Bis-Tris, 0.2 M NaCl, pH 7.0. The visible absorbance spectrum of luciferase-bound FMN is altered considerably relative to the spectrum of free FMN. The spectrum of the bound flavin shows an apparent splitting of the 443-nm peak yielding well-defined maxima at 458 nm and 434 nm.  相似文献   

4.
A heteroassociation of the antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and the vitamin. The equilibrium reaction constants, the induced proton chemical shifts, and the thermodynamic parameters (ΔH and ΔS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

5.
The two-component alkanesulfonate monooxygenase system utilizes reduced flavin as a substrate to catalyze a unique desulfonation reaction during times of sulfur starvation. The importance of protein-protein interactions in the mechanism of flavin transfer was analyzed in these studies. The results from affinity chromatography and cross-linking experiments support the formation of a stable complex between the flavin mononucleotide (FMN) reductase (SsuE) and monooxygenase (SsuD). Interactions between the two proteins do not lead to overall conformational changes in protein structure, as indicated by the results from circular dichroism spectroscopy in the far-UV region. However, subtle changes in the flavin environment of FMN-bound SsuE that occur in the presence of SsuD were identified by circular dichroism spectroscopy in the visible region. These data are supported by the results from fluorescent spectroscopy experiments, where a dissociation constant of 0.0022 +/- 0.0010 muM was obtained for the binding of SsuE to SsuD. Based on these studies, the stoichiometry for protein-protein interactions is proposed to involve a 1:1 monomeric association of SsuE with SsuD.  相似文献   

6.
Ametantrone and mitoxantrone, two new anthracenedione antineoplastic agents, produced a concentration-dependent inhibition of hepatic microsomal lipid peroxidation. Malondialdehyde production was diminished from 10.6 nmoles/mg/60 min to 3.3 and 5.4 nmoles/mg/60 min, in the presence of 100 μM mitoxantrone and ametantrone, respectively. Under similar conditions, Adriamycin stimulated lipid peroxidation over twofold. In addition, both mitoxantrone and ametantrone inhibited Adriamycin-stimulated lipid peroxidation, with 50% inhibition occurring at concentrations of 4 and 6 μM, respectively. Microsomal superoxide production was not significantly inhibited at anthracenedione concentrations which markedly decreased lipid peroxidation, suggesting that inhibition of lipid peroxidation was not the result of inhibition of superoxide generation. These results correlate with the lack of anthracenedione cardiotoxicity and also demonstrate anthracenedione inhibition of lipid peroxidation at micromolar concentrations; an observation with potential therapeutic significance.  相似文献   

7.
l-α-Hydroxyacid oxidase and glycolate oxidase have been partially purified from rat livers and found to be identical, judging by substrate specificities, Km values for certain substrates and coenzyme (FMN), activation energy, inhibition rates by various reagents and pH optimum. Km values are as follows; glycolate, 2.4 × 10?4m; l-α-hydroxyisocaproate, 1.26 × 10?3; glyoxylate, 1.41 × 10?4m; and FMN, 1.13 × 10?6m. Km values for glycolate and FMN are one-tenth and one-twentieth the literature values for hepatic glycolate oxidase. Sucrose density gradient centrifugation establishes that this enzyme is located in hepatic peroxisomes.  相似文献   

8.
The reaction of NAD(P)H:flavin oxidoreductase (flavin reductase) from Photobacterium fischeri is proposed to follow a ping-pong bisubstrate-biproduct mechanism. This is based on a steady-state kinetic analysis of initial velocities and patterns of inhibition by NAD+ and AMP. The double reciprocal plots of initial velocities versus concentrations of FMN or NADH show, in both cases, a series of parallel lines. The Michaelis constants for NADH (FMN saturating) and FMN (NADH saturating) are 2.2 and 1.2 × 10?4m, respectively. The product NAD+ has been found to be an inhibitor competitive with FMN but non-competitive with NADH. Using AMP as an inhibitor, noncompetitive inhibition patterns were observed with respect to both NADH and FMN as the varied substrate. In addition, the reductase was not inactivated by treatment with N-ethylmaleimide either alone or in the presence of FMN, but the enzyme was inactivated by N-ethylmaleimide in the presence of NADH. These findings suggest that flavin reductase shuttles between disulfide- and sulfhydryl-containing forms during catalysis.  相似文献   

9.
Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the flavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H–15N TROSY spectrum. This is the first report of an NMR structural study of a flavoenzyme from the Old Yellow Enzyme family and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.  相似文献   

10.
A thermodynamic study of the binding of flavins (FMN, FAD, 8-carboxylic acid-riboflavin) to the purified apoflavodoxin from Azotobacter vinelandii has been conducted. The binding of FMN was studied at a number of temperatures (10,15, 20, 25, and 30 °C), pH's (6.0, 7.4, and 9.0), and buffer conditions. The binding of FAD was studied at pH 7.4 and 25 °C under a number of buffer conditions. The binding of 8-carboxylic acid-riboflavin to the apoflavodoxin and the binding of FMN to the dimeric form of the apoflavodoxin were investigated at pH 7.4 and 25 °C. Enthalpies of binding for FMN, FAD, and 8-carboxylic- acid-riboflavin were ?28.3, ?16.6, and ?14.0 kcal mol?1, respectively. The enthalpy of binding of FMN to the dimeric form of the apoflavodoxin was ?22.2 kcal mol of binding sites?1. Binding constants of about 108,106, and 106 were obtained for the binding of FMN, FAD, and 8-carboxylic acid-riboflavin, respectively. Using established thermodynamic relationships free energy and entropy changes were calculated. The entropy data indicate that a large degree of ordering of the system occurs upon flavin binding. The pH data suggest that FMN may bind in both the mono-and dianion forms, and that binding doesn't change the pKa of any functional group in the system. It appears that the phosphate group is probably responsible for approximately half the binding enthalpy observed for the binding of FMN. The temperature-dependence data over the temperature range studied is biphasic, centered at 20 °C, indicating that flavin binding occurs to the protein in two thermodynamic states corresponding to the two heat capacities observed. These findings are used to discuss a model for flavin binding.  相似文献   

11.
Stimulation of the rates of NAD(P)H oxidation, superoxide generation, and hydrogen peroxide formation by three anthracenedione antineoplastic agents in the presence of NADPH-cytochrome P-450 reductase, NADH dehydrogenase, or rabbit hepatic microsomes was studied and the results compared with those obtained for the anthracyclines Adriamycin and daunorubicin. In all cases the anthracenediones, including mitoxantrone and ametantrone, were significantly (5- to 20-fold) less effective than the anthracyclines in stimulating NAD(P)H oxidation, superoxide formation, or hydrogen peroxide production. Of the three anthracenediones studied, the ring-monohydroxylated compound showed the greatest activity followed by the ring-dihydroxylated derivative (mitoxantrone). In contrast, the non-ring-hydroxylated anthracenedione (ametantrone) was a relatively ineffective electron acceptor and inhibited the reduction of more effective acceptors such as Adriamycin. Michaelis-Menten kinetic constants were determined by analysis of the rates of NADPH oxidation. NADP+ and 2'-AMP inhibited the reduction of the ring-hydroxylated anthracenediones and anthracyclines, demonstrating the enzymatic nature of the reaction. The non-ring-hydroxylated anthracenedione inhibited the reduction of Adriamycin by both P-450 reductase and NADH dehydrogenase with 50% inhibition achieved at approximately 300 microM. Thus, there appears to exist a structural relationship between anthracenedione ring hydroxylation and metabolic activation. These results also suggest that the relative inability of the anthracenediones to function as artificial electron acceptors in comparison to the anthracyclines may be correlated with diminished anthracenedione cardiotoxicity.  相似文献   

12.
A heteroassociation of antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and vitamin. The equilibrium reaction constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH and deltaS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

13.
14.
Self-association of hexadeoxynucleotide 5"-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H–31P NMR spectroscopy in water–salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin–d(TACGTA)2complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

15.
The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the KmATP values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the β4n-β5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.  相似文献   

16.
The equilibrium binding of the antitumor compound DHAQ, or mitoxantrone [1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10- anthracenedione], to various DNAs has been examined by optical titration and equilibrium dialysis methods. At low r (bound drug/DNA base pair) values, r less than 0.03, DHAQ binds, in a highly cooperative manner, to calf thymus and Micrococcus lysodeikticus DNAs. The binding isotherms for the interaction of DHAQ with Clostridium perfringens DNA and poly(dA-dT).poly(dA-dT) exhibit a small positive slope at low r values, suggestive of cooperative binding. In contrast, the binding of DHAQ to poly(dG-dC).poly(dG-dC) shows no evidence of cooperative binding even at very low r values. At higher r values (r greater than 0.05), the binding of DHAQ to all the DNAs studied is characterized by a neighbor-exclusion process. A model is proposed to account for the two modes of binding exhibited in the cooperative binding isotherms. The main feature of the proposed model is that local sequence and structural heterogeneity of the DNA give rise to sets of binding sites to which DHAQ binds in a highly cooperative manner, while the majority of the DNA sites bind DHAQ via a neighbor-exclusion process. This two-site model reproduces the observed binding isotherms and leads to the conclusion that DHAQ binds in clusters to selected regions of DNA. It is suggested that clustering may play a role in the physiological activity of drugs.  相似文献   

17.
Heteroassociation of antibacterial antibiotic norfloxacin with aromatic vitamins nicotinamide and flavin mononucleotide in aqueous solution was studied by 1H NMR spectroscopy (500 MHz). Equilibrium constants, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) for the reactions of heteroassociation of the molecules were determined on the basis of the concentration and temperature dependences of proton chemical shifts for interacting aromatic molecules. The analysis of the results obtained indicates the formation of heterocomplexes between vitamin molecules and norfloxacin owing to stacking interactions between aromatic chromophores and additional intermolecular hydrogen bonding in norfloxacin-nicotinamide. The most probable spatial structures of 1:1 norfloxacin-flavin mononucleotide and norfloxacin-nicotinamide heterocomplexes were determined by molecular modeling methods using X-PLOR software on the basis of analysis of induced proton chemical shifts.  相似文献   

18.
FAD Synthetase (FADS) [EC 2.7.7.2], the second enzyme in flavin cofactor biosynthetic pathway converts FMN to FAD, plays an important role in many redox reactions. Neurospora crassa FADS (NcFADS) was cloned and overexpressed in E. coli cells. Recombinant NcFADS was purified in high yields of ~8 mg per liter of bacterial culture using a single step glutathione sepharose affinity chromatography. SDS-PAGE and MALDI-MS revealed that NcFADS has a molecular mass of ~31 kDa. Enzyme kinetic analysis monitored by reverse phase HPLC demonstrate a specific activity and kcat of 1356 nmol/min/mg and 0.69sec?1 respectively. Steady state kinetic analysis of NcFADS exhibited a Km of NcFADS for FMN is 2.7 μM and for MgATP?2 is 88.7 μM. Isothermal titration calorimetry experiments showed that the recombinant protein binds to the substrates with apparent Kd of 20.8 μM for FMN and 16.6 μM for MgATP?2. Biophysical characterization using intrinsic fluorescence suggests that the enzyme is in folded conformation. Far-UV CD data suggest that the backbone of the enzyme is predominantly in a helical conformation. Differential scanning calorimetry data shows that the Tm is 53 °C ± 1. This is the first report on cloning, purification and characterization of FADS from N. crassa. The specific activity of NcFADS is the highest than any of the reported FADS from any other source. The results obtained in this study is expected to pave way for intensive research aimed to understand the molecular basis for the extraordinarily high turnover rate of NcFADS.  相似文献   

19.
The study of the flavin mononucleotide (FMN)-reduced nicotinamide adeninedinucleotide (NADH) reaction was carried out both under aerobic and anaerobic conditions, using spectrophotometric and titrimetric methods. The consumption of NADH was shown to exceed two times the consumption of FMN in the anaerobic reaction and the rate constant in the aerobic reaction was found to be about 4 times of that of the anaerobic reaction. Moreover, the replacement of anaerobic conditions by aerobic ones at pH 5.0 resulted in a considerable increase of proton consumption rate in the reaction course. The data obtained are contradictory to the generally accepted hypothesis of hydrid-ion transfer in the reaction of NADH oxidation. It was assumed that this reaction proceeded through a homolytic pathway.  相似文献   

20.
Abstract

Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS–HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS–HSA system was predicted from the Stern–Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48?×?104 M?1). Thermodynamic data revealed that the MNS–HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal’s interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein’s secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein’s fluorophores, upon MNS binding. Significant improvement in the protein’s thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow’s site I) of the protein.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号