共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and some properties of sn-glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
An NAD-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+ oxidoreductase, EC 1.1.1.8) has been isolated and purified from Saccharomyces cerevisiae by affinity and exclusion chromatography. The enzyme was purified 5100-fold to a specific activity of 158. It has a molecular weight of approximately 31,000, a pH optimum between 6.8 and 7.2, and is sensitive to high-ionic-strength salt solutions. The enzyme is most strongly inhibited by phosphate and chloride ions. 相似文献
2.
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.8 × 105 and was composed of four subunits of apparently equal size. The substrate specificity was very strict, only glucose 6-phosphate and glucose being oxidized by NADP or thio-NADP. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to glucose 6-phosphate, with Ki about 2.5 μm. Other divalent metal ions which also serve as inhibitors are nickel, cadmium, and cobalt. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of glucose-6-phosphate dehydrogenase. 相似文献
3.
Eric W. Triplett Dale G. Blevins Douglas D. Randall 《Archives of biochemistry and biophysics》1982,219(1):39-46
Xanthine dehydrogenase (EC 1.2.1.37), an essential enzyme for ureide metabolism was purified from the cytosol fraction of soybean nodules. The purified xanthine dehydrogenase was shown to be homogeneous by electrophoresis and a pI of 4.7 was determined by isoelectric focusing. The enzyme had a molecular weight of 285,000 and two subunits of molecular weight 141,000 each. The holoenzyme contained 1.7 (±0.7) mol Mo and 8.1 (±2.0) mol Fe/mol enzyme and the enzyme also contained FMN and is thus a molybdoironflavoprotein. Soybean xanthine dehydrogenase is the second enzyme in plants demonstrated to contain Mo and the first xanthine-oxidizing enzyme reported to contain FMN, rather than FAD as the flavin cofactor. 相似文献
4.
The microbody isoenzyme of malate dehydrogenase (EC 1.1.1.37) from leaves of Spinacia oleracea was purified to a specific activity of 3000 units/mg protein and examined for a number of physical, kinetic, and immunological properties. The purified enzyme has a molecular weight of approximately 70,000 and an isoelectric point of 5.65. Thermal inactivation first order rate constants were 0.068 (35 °C), 0.354 (45 °C), and 2.11 (55 °C) for irreversible denaturation. Apparent millimolar Michaelis constants are 0.34 (NAD, pH 8.5) 0.16 (NADH, pH 7.5), 3.33 (malate, pH 8.5), 0.07 (OAA, pH 6.0), 0.06 (OAA, pH 7.5), and 0.50 (OAA, pH 9.0). The enzyme is stablized by 20% glycerol and can be stored for several months at 4 °C without detectable loss of activity. The purified enzyme is sensitive to the ionic strength of the assay medium exhibiting a pH optimum of 5.65 at high ionic strength and 7.00 at low ionic strength. Rabbit antiserum prepared against the purified microbody MDH shows a single precipitin band on immunodiffusion analysis. Immunological studies indicate that rabbit antiserum prepared against the purified microbody enzyme cross reacts approximately 10% with the mitochondrial isoenzyme of MDH. No cross reaction was shown with the soluble isoenzyme. In general, the data presented in this report tend to support the notion of organelle specific isoenzymes of malate dehydrogenase in higher plant tissues and uniqueness of the microbody form of malate dehydrogenase in particular. 相似文献
5.
Harold M. Farrell 《Archives of biochemistry and biophysics》1980,204(2):551-559
NADP+:isocitrate dehydrogenase has been purified to homogeneity from lactating bovine mammary gland. Purification was achieved through the use of affinity and DEAE-cellulose chromatography. The isolated enzyme gives one band when stained for protein or enzyme activity on discontinuous alkaline gel electrophoresis. The enzyme has a molecular weight of 55,000 as estimated by sodium dodecyl sulfate-gel electrophoresis and a Stokes radius of 4.1 nm as measured by gel chromatography. The enzyme will not use NAD+ in place of NADP+ and has an absolute requirement for divalent cations. The apparent Km values for dl-isocitrate, Mn2+, and NADP+ were found to be 8, 6, and 11 μm, respectively. The Mn2+-ds-isocitrate complex is the most likely substrate for the mammary enzyme with a Km of 3 μm. The properties of mammary NADP+:isocitrate dehydrogenase are compared with those of the homologous enzymes from pig heart and bovine liver, and its characteristics are discussed with respect to the function of the enzyme in lactating mammary gland. 相似文献
6.
Galactose-1-phosphate uridylyltransferase (uridine diphosphoglucose: α-d-galactose-1-phosphate uridylyltransferase, EC 2.7.7.12) has been purified 4000-fold from human placenta in four chromatographic steps using DEAE-cellulose, hydrocylapatite, ethyliminohexylagarose, and Sephacryl S-200. The specific activity of the homogeneous enzyme was 56 units/mg protein. The placental enzyme consists of two similar subunits, each of molecular weight about 48,000. The placental enzyme was similar to published results for the red cell enzyme (V. P. Williams, Arch. Biochem. Biophys., 1978, 191, 182–191) with respect to subunit molecular weight, electrophoretic migration, and immunological properties. The more purified fractions of the placental enzyme invariably contained a glycoprotein which was removed in the gel filtration step. After this glycoprotein was removed, the enzyme was very labile and only about 20% of the catalytic activity was recovered. 相似文献
7.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase 总被引:2,自引:0,他引:2
M Kochman J Golebiowska T Baranowski J R Dedman D W Fodge B G Harris 《FEBS letters》1974,41(1):104-107
8.
A rapid and convenient procedure for isolating human glyceraldehyde-3-phosphate dehydrogenase from erythrocytes has been developed and yields enzyme with a specific activity of 33–52. The physical and catalytic properties of the enzyme are similar to those of rabbit muscle enzyme. Reassociation of freshly isolated human glyceraldehyde-3-phosphate dehydrogenase with washed erythrocyte membranes increases the specific activity and stability of the enzyme suggesting that enzyme-membrane interactions may have an important effect on the conformation and catalytic activity. That the human enzyme behaves as a dimer of dimers, similar to the behavior or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, is suggested by its half-of-the-sites reactivity toward 4-iodoacetamido-1-naphthol. The human enzyme binds nicotinamide hypoxanthine dinucleotide, a structural analog of NAD+, with negative cooperativity, further indicating its similarity to rabbit muscle enzyme. 相似文献
9.
Glyceraldehyde-3-phosphate dehydrogenase (GAPD) was isolated from human erythrocyte ghosts by a simple procedure utilizing ammonium sulfate precipitation and affinity chromatography on NAD+-Sepharose 4B. The purified enzyme had a specific activity of 98 units/mg protein. The kinetic mechanism of GAPD was studied by product and deadend inhibition using NADH, α-glycerophosphate, nitrate, and 2,3-diphosphoglycerate. The results indicated that the human erythrocyte GAPD-catalyzed reaction follows an ordered ter bi mechanism characterized by the sequential addition of NAD+, glyceraldehyde 3-phosphate (GAP), and phosphate to the enzyme and the sequential release of 1,3-diphosphoglycerate and NADH from the enzyme. This contrasts with the mechanism (rapid equilibrium random ter bi) proposed by Oguchi (1970, J. Biochem. (Tokyo)68, 427–439) who based his conclusion on the initial rate data alone. Since the Michaelis-Menten kinetics were not applicable to this enzyme because of the competitive substrate inhibition by GAP, we devised a new kinetic approach for determining the parameters of the GAPD-catalyzed reaction. Results of this study indicate that the GAPD-catalyzed reaction is regulated by both ATP and GAP. We propose that GAP acts as an “amplifier” for the feedback inhibition effect of ATP. We discuss the effect this may have played in causing controversy over the regulatory role of this enzyme in glycolysis. 相似文献
10.
Purification and properties of a NAD-linked 1,2-propanediol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244 总被引:2,自引:0,他引:2
C T Hou R N Patel A I Laskin N Barnabe I Barist 《Archives of biochemistry and biophysics》1983,223(1):297-308
NAD-dependent 1,2-propanediol dehydrogenase (EC 1.1.1.4) activity was detected in cell-free crude extracts of various propane-grown bacteria. The enzyme activity was much lower in 1-propanol-grown cells than in propane-grown cells of Pseudomonas fluorescens NRRL B-1244, indicating that the enzyme may be inducible by metabolites of propane subterminal oxidation. 1,2-Propanediol dehydrogenase was purified from propane-grown Ps. fluorescens NRRL B-1244. The purified enzyme fraction shows a single-protein band upon acrylamide gel electrophoresis and has a molecular weight of 760,000. It consists of 10 subunits of identical molecular weight (77,600). It oxidizes diols that possess either two adjacent hydroxy groups, or a hydroxy group with an adjacent carbonyl group. Primary and secondary alcohols are not oxidized. The pH and temperature optima for 1,2-propanediol dehydrogenase are 8.5 and 20-25 degrees C, respectively. The activation energy calculated is 5.76 kcal/mol. 1,2-Propanediol dehydrogenase does not catalyze the reduction of acetol or acetoin in the presence of NADH (reverse reaction). The Km values at 25 degrees C, pH 7.0, buffer solution for 1,2-propan1,2-propanediol dehydrogenase are 8.5 and 20-25 degrees C, respectively. The activation energy calculated is 5.76 kcal/mol. 1,2-Propanediol dehydrogenase does not catalyze the reduction of acetol or acetoin in the presence of NADH (reverse reaction). The Km values at 25 degrees C, pH 7.0, buffer solution for 1,2-propan1,2-propanediol dehydrogenase are 8.5 and 20-25 degrees C, respectively. The activation energy calculated is 5.76 kcal/mol. 1,2-Propanediol dehydrogenase does not catalyze the reduction of acetol or acetoin in the presence of NADH (reverse reaction). The Km values at 25 degrees C, pH 7.0, buffer solution for 1,2-propanediol and NAD are 2 X 10(-2) and 9 X 10(-5) M, respectively. The 1,2-propanediol dehydrogenase activity was inhibited by strong thiol reagents, but not by metal-chelating agents. The amino acid composition of the purified enzyme was determined. Antisera prepared against purified 1,2-propanediol dehydrogenase from propane-grown Ps. fluorescens NRRL B-1244 formed homologous precipitin bands with isofunctional enzymes derived from propane-grown Arthrobacter sp. NRRL B-11315, Nocardia paraffinica ATCC 21198, and Mycobacterium sp. P2y, but not from propane-grown Pseudomonas multivorans ATCC 17616 and Brevibacterium sp. ATCC 14649, or 1-propanol-grown Ps. fluorescens NRRL B-1244. Isofunctional enzymes derived from methane-grown methylotrophs also showed different immunological and catalytic properties. 相似文献
11.
Purification and properties of phosphorylase from baker's yeast 总被引:2,自引:0,他引:2
J U Becker R Wingender-Drissen E Schiltz 《Archives of biochemistry and biophysics》1983,225(2):667-678
A rapid, reliable method for purification of phosphorylase, yielding 200-400 mg pure phosphorylase from 8 kg of pressed baker's yeast, is described. The enzyme is free of phosphorylase kinase activity but contains traces of phosphorylase phosphatase activity. Phosphorylase constitutes 0.5-0.8% of soluble protein in various strains of yeast assayed immunochemically. The subunit molecular weight (Mr) of yeast phosphorylase is around 100,000. The enzyme is composed of two subunits in various ratios, differing slightly in molecular weight and N-terminal sequence. Both are active. Only the enzyme species containing the larger subunit can form tetramers and higher oligomers. The activated enzyme is dimeric. Correlated with specific activity (1 to 110 U/mg), phosphorylase contained between less than 0.1 to 0.74 covalently bound phosphate per subunit. Inactive forms of phosphorylase could be activated by phosphorylase kinase and [gamma-32P]ATP with concomitant phosphorylation of a single threonine residue in the aminoterminal region of the large subunit. The small subunit was not labeled. The incorporated phosphate could be removed by yeast phosphorylase phosphatase, resulting in loss of activity of phosphorylase, which could be restored by ATP and phosphorylase kinase. 相似文献
12.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes. 相似文献
13.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: revised kinetic mechanism and kinetics of ATP inhibition 总被引:2,自引:0,他引:2
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes. 相似文献
14.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Mycobacterium smegmatis has been purified to homogeneity through a seven-step procedure with a yield of 16% and specific activity of 220 units/mg protein. The purified enzyme had a molecular weight of 230,700 and was composed of four subunits with identical molecular weights of 57,540. Analysis of amino acid composition revealed a low content of aromatic amino acids. The enzyme exhibited sigmoidal kinetics of varying concentrations of phosphoenolpyruvate, the degree of cooperativity and S0.5v value for phosphoenolpyruvate being strongly dependent on the pH of the reaction mixture. Among the nucleoside diphosphates acting as substrate for pyruvate kinase, ADP was the best phosphate acceptor, as judged by its lowest Km value. The enzyme showed an absolute requirement for divalent cations (either Mg2+ or Mn2+), but monovalent cations were not necessary for activity. Other divalent cations inhibited the Mg2+-activated enzyme to varying degrees (Ni2+ > Zn2+ > Cu2+ > Ca2+ > Ba2+). The differences in the kinetic responses of the enzyme to Mg2+ and Mn2+ are discussed. 相似文献
15.
Purine hydroxylase II from Aspergillus nidulans has been purified to near homogeneity. The enzyme has a pI of 5.7, a molecular weight of 300,000, and two subunits with molecular weight of 153,000 each. The enzyme contains 2 FAD, 2 molybdenum atoms, and 4 (2 Fe-2S) iron-sulfur centers per molecule and exhibits broad specificity for reducing and oxidizing substrates. Among the more notable characteristics are the ability to oxidize hypoxanthine and nicotinic acid but not xanthine and virtually complete inactivity with oxygen. Moreover, while the enzyme is inactivated by borate and methanol, it is very resistant to cyanide and arsenite and it not inactivated by allopurinol. At infinite concentrations of reducing and oxidizing substrates, the Km for hypoxanthine was 119 microM, for nicotinic acid was 136 microM, and for NAD+ was 525 microM. 相似文献
16.
Kathryn E. Crow Terence J. Braggins Michael J. Hardman 《Archives of biochemistry and biophysics》1983,225(2):621-629
Cytosolic malate dehydrogenase from human liver was isolated and its physical and kinetic properties were determined. The enzyme had a molecular weight of 72,000 ± 2000 and an amino acid composition similar to those of malate dehydrogenases from other species. The kinetic behaviour of the enzyme was consistent with an Ordered Bi Bi mechanism. The following values (μm) of the kinetic parameters were obtained at pH 7.4 and 37 °C: Ka, 17; Kia, 3.6; Kb, 51; Kib, 68; Kp, 770; Kip, 10,700; Kq, 42; Kiq, 500, where a, b, p, and q refer to NADH, oxalacetate, malate, and NAD+, respectively. The maximum velocity of the enzyme in human liver homogenates was 102 μmol/min/g wet wt of liver for oxalacetate reduction and 11.2 μmol/min/g liver for malate oxidation at pH 7.4 and 37 °C. Calculations using these parameters showed that, under conditions in vivo, the rate of NADH oxidation by the enzyme would be much less than the maximum velocity and could be comparable to the rate of NADH production during ethanol oxidation in human liver. The rate of NADH oxidation would be sensitive to the concentrations of NADH and oxalacetate; this sensitivity can explain the change in cytosolic redox state during ethanol metabolism in human liver. 相似文献
17.
W A Fenton A M Hack H F Willard A Gertler L E Rosenberg 《Archives of biochemistry and biophysics》1982,214(2):815-823
Methylmalonyl coenzyme A (CoA) mutase has been purified to apparent homogeneity from human liver by a procedure involving column chromatography on DEAE-cellulose, Matrex-Gel Blue A, hydroxylapatite, and Sephadex G-150. The overall purification achieved is 500- to 600-fold, yield 3–5%. Electrophoresis of the native purified protein on nondenaturing polyacrylamide gels shows a single diffuse band coincident with the enzyme activity; dodecyl sulfate/polyacrylamide gels show a single protein band with an apparent molecular weight of 77,500. The native protein has a molecular weight of approximately 150,000 by Sephadex G-150 chromatography, suggesting that it is composed of two identical subunits. The activity of the purified enzyme is stimulated only slightly (10–20%) by the addition of its cofactor, adenosylcobalamin, indicating that the purified enzyme is largely saturated with coenzyme. The spectrum of the enzyme is consistent with the presence of about 1 mole of adenosylcobalamin per mole of subunit. The enzyme displays complex kinetics with respect to dl-methylmalonyl CoA; substrate inhibition by l-methylmalonyl CoA appears to occur. The enzyme activity is stimulated by polyvalent anions (PO43? > SO42? > Cl?); monovalent cations are without effect, but high concentrations of divalent cations are inhibitory. The enzyme activity is insensitive to N-ethylmaleimide, is rapidly destroyed at temperatures > 50 °C, and shows a broad pH optimum around pH 7.5. 相似文献
18.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure. 相似文献
19.
J.E. Escamilla M. Contreras A. Martínez M. Zentella-Piña 《Archives of biochemistry and biophysics》1982,218(1):275-285
The purification procedure of milligram quantities of stable myoinositol-1-phosphate synthase (EC 5.5.1.4) from Neurospora crassa is reported. The procedure includes: (a) (NH4)2SO4 and protamine sulfate precipitations, (b) gel filtration in Ultrogel AcA-34 (LKB), (c) DEAE-cellulose chromatography, (d) AH-Sepharose 4B chromatography, and (e) calcium phosphate gel chromatography. The enzyme is considered pure according to the following criteria: (a) gel filtration, (b) sucrose density gradient centrifugation, (c) polyacrylamide gel electrophoresis, and (d) isoelectric focusing technique. The molecular weight estimated by gel filtration chromatography and sucrose density gradient centrifugation is 345,000. The subunit molecular weight is 59,000. The active enzyme seems to posses an hexameric structure. The isoelectric point estimated for the pure enzyme is 5.2. The enzyme was optimally stimulated by 10 mm (NH4)2SO4 and by 50 mm KCl, while NaCl had a minor inhibitory effect at higher concentrations. The divalent cations Mg2+ and Mn2+ were inhibitory only at nonphysiological concentrations. The enzymatic activity after the salt fractionation steps was about 33% NAD+ independent; but with purification the resulting homogeneous enzyme showed less than 5% NAD+-independent activity. 相似文献
20.
Purification and properties of L-alanine:4,5-dioxovalerate aminotransferase from Chlorella regularis 总被引:1,自引:0,他引:1
The enzyme L-alanine:4,5-dioxovalerate aminotransferase (EC 2.6.1.43), which catalyzes the synthesis of 5-aminolevulinic acid, was purified 161-fold from Chlorella regularis. The enzyme also showed L-alanine:glyoxylate aminotransferase activity (EC 2.6.1.44). The activity of glyoxylate aminotransferase was 56-fold greater than that of 4,5-dioxovalerate aminotransferase. The ratio of the two activities remained nearly constant during purification, and when the enzyme was subjected to a variety of treatments. 4,5-Dioxovalerate aminotransferase activity was competitively inhibited by glyoxylate, with a Ki value of 0.5 mM. Double-reciprocal plots of velocity versus 4,5-dioxovalerate with varying L-alanine concentrations indicate a ping-pong reaction mechanism. The apparent Km values for 4,5-dioxovalerate and L-alanine were 0.12 and 3.5 mM, respectively. The enzyme is an acidic protein having an isoelectric point of 4.8. The molecular weight of the enzyme was estimated to be 126,000, with two identical subunits. These results suggest that, in Chlorella, as in bovine liver mitochondria and Euglena, both 4,5-dioxovalerate and glyoxylate aminotransferase activities are associated with the same protein. From the activity ratio of transamination and catalytic properties, it is concluded that this enzyme does not function primarily as a part of the 5-carbon pathway to 5-aminolevulinic acid synthesis. 相似文献