首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several derivatives of hemocyanin from Taiwan snails (Achatina fulica) have been prepared. The reconstituted protein (R-HcO2) has lower Cu content, lower circular dichroism intensity, and higher fluorescence intensity than native oxyhemocyanin (HcO2). The Co(II) derivative (CoHc) does not take up molecular oxygen and only 50% of the total sites for Cu in native hemocyanin is taken up by Co. The half-apo derivative (half-apo-Hc) contains a single Cu per active site. Divalent cations quench the tryptophan fluorescence in the hemocyanin species and also quench the fluorescence from Tb3+ bound to the protein. The collisional quenching constants decrease in the order Co2+ > Mn2+ > Ca2+. The static component is negligible. For carboxy hemocyanin (HcCO), fluorescence originates from a Cu(I) CO complex and was used to study reaction of Hc CO with CN.  相似文献   

2.
Co(II)-substituted hemocyanin (Co(II)Hc) of the octopus, Octopus vulgaris, has been prepared by dialysis of apohemocyanin against Co(II·) ion and subsequent Chelex-treatment. The blue 50%-Co(II)Hc (half-apo Co(II)Hc), in which binuclear coppers are replaced in the hemocyanin by a single Co(II), exhibits two absorption maxima at 560 (?Co=250) and 594 nm (?Co=320 M?1 cm?1) and a shoulder near 610 nm, all of which are attributed to a dd transition of high spin Co(II) (S=3/2) with a tetrahedral geometry. The magnetic circular dichroism (MCD) spectrum in this region also suggests the existence of a tetrahedral Co(II) species in the protein. The visible absorption and MCD spectra of octopus 50%-Co(II)Hc are quite similar to those of squid 50%-Co(II)Hc described in the previous paper (S. Suzuki, J. Kino, M. Kimura, W. Mori and A. Nakahara, Inorg. Chim. Acta, 66, 41 (1982)). The formation of half-apo Co(II)Hc demonstrates that the binuclear copper sites in native octopus hemocyanin may differ from each other in coordination geometry, as in other molluscan hemocyanins, squid and snail hemocyanins. The coordination environment of the active-site Co(II) substituted for Cu in the octopus hemocyanin is the same as that of the corresponding active site of the squid hemocyanin.  相似文献   

3.
The binuclear copper active site of Carcinus hemocyanin has been reconstituted by incubating apohemocyanin with Cu(I) in the presence of Br- ions. At constant Cu(I) concentration the kinetics of reconstitution depends on both pH and Br- concentration. The process is faster at pH 6.0 than at pH 7.0 and in both cases the reaction is accelerated by increasing Br- concentration from 0.1 M to 0.4 M. At pH 6.0 a time-dependent inactivation of the O2-binding properties of reconstituted hemocyanin is observed. This effect is attributed to a perturbation in the active site microenvironment caused by unspecifically bound copper. Br- ions show a protective effect probably by chelating excess metal.  相似文献   

4.
The subunit structure of the hemocyanin from the squid Sepioteuthis lessoniana has been characterized by analytical sedimentation. The protein exists free in the hemolymph as a 60S, multisubunit structure with a molecular mass of approximately 4.0 × 106 gm/mol. At extremes of pH this can be dissociated into 10 monomers, of mass 3.8 × 105 gm/mol each.At neutral pH, if 5 mM Mg2+ or less is present, the monomers associate to form a dimer of molecular mass 7.7 × 105 gm/mol. In the pH range from 10.5 to 7.5, formation of the dimer is facilitated by the binding of one proton per monomer. If the magnesium concentration is raised to 25 mM or more, the dimers reversibly and completely associate into decamers. This process is shown to require the binding of 10 magnesium ions.In its size, subunit structure, and behavior with respect to association–dissociation processes, Sepioteuthis hemocyanin resembles the corresponding proteins of other squid much more than it does those of Octopus or Nautilus.  相似文献   

5.
The hemocyanin of the horseshoe crab Limulus polyphemus is characteristic of arthropod hemocyanins in that it is a high-molecular-weight oligomer composed of functionally and structurally distinct subunits. The protein forms a 48-subunit complex, the largest form of arthropod hemocyanin, whose oxygen-binding characteristics are modulated by subunit interaction within the oligomer. It has previously been shown that a number of electrophoretic isozymes, which are identical immunochemically, are present in dissociated Limulus hemocyanin. In this study it is demonstrated that the electrophoretic differences in the antigenically identical subunits are not reflected in their oxygen-binding and self-assembly properties or in the roles they play in reassembly and function of the 48-subunit native molecule. The chloride-dependent modulation of the oxygen-binding properties of those Limulus subunits which do not self-assemble, as documented here, illustrates that this allosteric effect may be operable at the tertiary level. For each of the purified subunits the effects of pH and calcium ions on oxygen-binding characteristics and self-assembly reactions are reported, and the roles of specific subunits in reassembly of distinct aggregation states are further documented.  相似文献   

6.
Copper in the cytosol of the hepatopancreas of the American lobster, Homarus americanus, occurs as copper-metallothionein [Cu(I)-MT] and as a copper-glutathione complex [Cu(I)-GSH]. The latter can act in vitro as the source of Cu(I) in the reconstitution of lobster apohemocyanin, whereas Cu(I)-MT cannot. Here we report on the mechanism of the GSH-mediated reconstitution. Binding of Cu(I) to apohemocyanin was measured by its effect on the protein's fluorescence, by ultrafiltration experiments and size-exclusion HPLC. Reconstitution of CO and O2 binding was studied using the [Cu(I)...Cu(I)-CO] fluorescence of hemocyanin and its Cu-O2-Cu charge-transfer band as spectral probes. The hemocyanin oligomer has 1 (1.02 +/- 0.09) high-affinity (apparent Kdiss = 1.67 +/- 0.40 microM) external binding site for ionic Cu(I) per subunit. Binding of Cu(I) to this site is fast and reversible and is followed by a slow, irreversible incorporation of copper into the protein matrix. Movement of the first copper through the matrix to the active site is the rate-limiting step in the reconstitution process. Mononuclear copper sites, once formed, are rapidly converted into biologically active, binuclear copper sites. In accordance with this reaction sequence, the restoration of CO/O2 binding by hemocyanin is a first-order reaction with a half-time of 100 +/- 5 min at pH 6.0. Reconstitution is extremely pH-dependent and proceeds best at those pH values where the architecture of the copper pocket of hemocyanin is open as judged from its extremely low affinity for oxygen and its very fast oxygen dissociation rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Native Paralithodes camtschaticae hemocyanin is found as a mixture of dodecamers (24S; 80%) and hexamers (16S; 20%). Removal of Ca2+ ions by dialysis against EDTA-containing buffer solution at neutral pH induces complete dissociation of the 24S form into the 16S form. Under these conditions, a further increase in pH to 9.2 produces complete dissociation of the hexamers into monomers (5S). In both cases, the dissociation process is reversible. The dodecamer (24S) is composed of two different hexamers which can be discriminated only by ion-exchange chromatography in the presence of Ca2+ ions. At alkaline pH and in the presence of EDTA, two major monomeric fractions can be separated by ion-exchange chromatography: ParcI (60%) and ParcII (40%). The reassociation properties of the two fractions were studied separately to define their ability to form hexamers and dodecamers. The oxygen-binding properties of the different aggregation states were investigated. Native hemocyanin binds O2 co-operatively (nH = 3) and with low affinity (p50 approximately 103 Torr). The two monomeric fractions, ParcI and ParcII, are not co-operative and the affinity is twice that of the native protein (p50 approximately 65 and 52 Torr). Oxygen-binding measurements of native hemocyanin carried out at different pH values indicate a strong positive Bohr effect within the pH range 6.5-8.0 and an increase in oxygen affinity at pH below 6.5.  相似文献   

8.
The objective of this study was to examine the effects of 2,2,2 trifluoroethanol (TFE) and acetonitrile (ACN) on the stability, behavior, and structural characteristics of giant multimeric protein Keyhole Limpet hemocyanin (KLH) by combining the circular dichroism (CD) and fluorescence measurements of KLH solution. In concentration range 20–50 % (v/v) TFE, protein at pH 7.4 shows visible aggregation while no aggregation was observed in the entire concentration range of TFE at molten globule (MG) state (pH 2.8) and resulted in stable α-helix. Our result shows that in the presence of 80 % (v/v) and 40 % (v/v) TFE, at native (pH 7.4) and MG state (pH 2.8) occurred in a highly helical state referred to as TFE denatured state I and II, respectively. However, in case of ACN, aggregation starts above 40 % (v/v) for pH 7.4 and at 80 % (v/v) for acid-induced MG (pH 2.8) state, which was dominated by β-sheet structure and referred to as ACN denatured state III and IV. An important object of our investigation is to get more detail study of efficiency of cosolvents in inducing structural changes in KLH. The dependence of scattering intensity and the R h on alcohol concentrations was investigated at 25 °C.  相似文献   

9.
Summary The comparative accessibility of the active sites of hemocyanin and tyrosinase, two proteins containing a binuclear type-3 copper site, has been investigated. The approaches were: (a) the kinetic study of the reaction of hemocyanin with cyanide in the presence of conformation perturbants; (b) the comparison between the kinetic parameters of the cyanide reaction on hemocyanin and tyrosinase; (c) the study of the efficiency and reaction mechanism of hemocyanin interaction with a typical tyrosinase substrate like catechol. The results indicate that the active site of tyrosinase is much more exposed than that of hemocyanin.  相似文献   

10.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

11.
Terbium ion binds to calcium-free Limulus hemocyanin at pH 7.0 and 8.9, and promotes the aggregation of hemocyanin subunits, a phenomenon associated with calcium binding. An excitation maximum for the bound terbium at 293 nm and the results of treating the hemocyanin with N-bromosuccinimide indicate that energy transfer from tryptophan to the bound terbium is responsible for the enhancement of terbium fluorescence. At pH 8.9, addition of calcium to hemocyanin containing bound terbium results in only a partial loss of terbium fluorescence, suggesting heterogeneity in the terbium binding sites. Titration of hemocyanin with terbium also indicates multiple binding sites.  相似文献   

12.
There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of β-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations ≤0.13 mM, the thermogram shows an endothermic peak at 84.3°C, corresponding to denaturation; for concentrations >0.13 mM an exothermic peak also appears, above 90°C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu2+ or Zn2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10°C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.  相似文献   

13.
The intrinsic and inducible phenoloxidase (PO) activity of Rapana thomasiana hemocyanin (RtH) and its substructures were studied. With catechol as substrate, a weak o-diPO activity was measured for the didecameric RtH and its subunits. Some activation of the o-diPO activity of RtH was achieved by limited treatment with subtilisin and by incubation of RtH with 2.9 mM sodium dodecyl sulphate (SDS), suggesting an enhanced substrate access to the active sites. The highest artificial induction of o-diPO activity in RtH, however, was obtained by lyophilization of the protein. This is ascribed to conformational changes during the lyophilization process of the didecameric RtH molecules, affecting the accessibility of the active sites. These conformational changes must be very small, since Fourier-transform infrared and circular dichroism spectroscopies did not reveal any changes in secondary structure of lyophilized RtH. The difference in accessibility of the copper containing active site for substrates between catechol oxidase and functional unit RtH2-e was demonstrated by molecular modeling and surface area accessibility calculations. The low level of intrinsic PO activity in the investigated hemocyanin is related to the inaccessibility of the binuclear copper active sites to the substrates.  相似文献   

14.
Summary Four derivatives ofCarcinus maenas hemocyanin containing Co(II) in the active site have been prepared under different experimental conditions. Two of them contain one Co(II) ion/active site and most probably represent isomeric forms containing Co(II) either in the fast-reacting or in the slow-reacting position within the active site. A third derivative contains two Co(II) ions active site, which reproduces the metal/protein stoichiometry of native hemocyanin. The fourth derivative is a metal hybrid form containing one Cu(I) ion and one Co(II) ion/active site. The derivatives have been characterized by absorption, circular dichroic and fluorescence spectroscopies. The results indicate that in all derivatives the metal is bound with a low coordination number, in agreement with the presence of three histidine residues/copper ion in the native protein. The two alternative metal-binding positions have different structures as shown by the different spectroscopic properties of the bound Co(II) ions. A marked hyperchromic effect on the optical absorption of Co(II) is observed as a result of the presence of a metal ion in the neighbouring metal-binding position in the active site.  相似文献   

15.
Hemocyanins are oxygen carriers of arthropods and molluscs. The oxygen is bound between two copper ions, forming a Cu(II)-O2 2–-Cu(II) complex. The oxygenated active sites create two spectroscopic signals indicating the oxygen load of the hemocyanins: first, an absorption band at 340 nm which is due to a ligand-to-metal charge transfer complex, and second, a strong quenching of the intrinsic tryptophan fluorescence, the cause of which has not been definitively identified. We showed for the 4×6-mer hemocyanin of the tarantula Eurypelma californicum that the fluorescence quenching of oxygenated hemocyanin is caused exclusively by fluorescence resonance energy transfer (FRET). The tarantula hemocyanin consists of 24 subunits containing 148 tryptophans acting as donors and 24 active sites as acceptors. The donor–acceptor distances are determined on the basis of a closely related crystal structure of the horseshoe crab Limulus polyphemus hemocyanin subunit II (68–79% homology). Calculation of the expected fluorescence quenching and the measured transfer efficiency coincided extraordinary well, so that the fluorescence quenching of oxygenated tarantula hemocyanin can be completely explained by Förster transfer. This results explain for the first time, on a molecular basis, why fluorescence quantum yield can be used as an intrinsic signal for oxygen load of at least one arthropod hemocyanin, in particular that from the tarantula.  相似文献   

16.
The kinetics of the reaction between Carcinus maenas hemocyanin and cyanide has been studied at various KCN concentrations and a different temperatures (21° and 4°C) by following the decrease of the copper-peroxide absorption band, centered at 337 nm, of the copper still bound to the protein and the intrinsic fluorescence changes as functions of time. In all conditions used, the absorption band completely disappears and KCN concentration affects only the rate of the process. The reaction is kinetically homogeneous indicating no site-site interaction. The apparent rate constant increases with the square of cyanide concentration and the inverse of O2 concentration. The copper still bound decreases at a rate slower than the 337 nm absorption and the process is not kinetically homogeneous. The fluorescence of the protein increases after an induction period showing an inflection point at about 50% of the total effect. A kinetic model has been proposed on the assumption that the two metal ions are removed sequentially from the active site. The experimental data are in agreement with the theoretical equations derived from the model. The equilibrium constants for the formation of the complex between the first and the second copper ion with cyanide and the rate constants of their decomposition have been calculated. The rate-limiting process for the removal of the second copper ion is the formation of the complex with cyanide.  相似文献   

17.
The reaction between Carcinus maenas hemocyanin and cyanide has been used for probing protein conformation in the presence of perturbants such as various anions, cations (Ca2+, Mg2+), and aliphatic alcohols. The kinetic parameters of the reaction are strongly affected by these agents, suggesting that the induced conformational modifications change the reactivity of the active site toward exogenous ligands. Different patterns are observed according to the perturbant used. As indicated by the mathematical treatment of the kinetic curves the affinity of the active site for CN- and O2 is affected much more than the rate constant of copper removal.  相似文献   

18.
The binuclear copper in the active site of Carcinus maenas hemocyanin has been substituted with one EDTA-resistant Co(II) per 75 000 Mr by reconstitution of the apo protein. Specific cobalt substitution at the copper binding site is demonstrated from the optical spectral changes directly correlated with the amount of Co(II) bound to the protein, the ellipticity in CD spectra in the near UVVis region, and the efficiency of tryptophan fluorescence quenching. The optical absorption spectrum of the cobalt-substituted protein is characterized by a band pattern attributable to d-d transitions of the metal ion. Both the position of the wavelength maximum (568 nm) and the molar extinction coefficient (≅300 M-1 cm-1) are typical of a four-coordinate, pseudo-tetrahedral Co(II) center.Optical titrations indicate that Cl-, Br-, N3-, SCN-, and CN- bind to Co(II)Hc, each with a stoichiometry of 1:1 per metal center. The apparent stability constants determined from Hill plots of titration data decrease in the order CN- » N3- ≅ SCN- >Cl->Br-. Low temperature EPR studies demonstrate that at pH 7, the cobalt is high spin both in the presence and absence of anionic ligands. A low spin species is formed at pH 9 in the presence of cyanide. The spectrum of this latter complex exhibits superhyperfine structure indicative of metal ligation to 14N supplied by the protein. Direct ligation of cyanide to cobalt is demonstrated by additional spectral splitting observed when this complex is formed using 13C-labelled CN-.  相似文献   

19.
Arthropodan hemocyanins are giant respiratory proteins responsible for oxygen transport. They exhibit unusual assemblies of up to 48 structural subunits. Hemocyanin from Carcinus aestuarii contains three major and two minor structural subunits. Here, we reveal the primary structure of the gamma-type 75 kDa subunit of Carcinus aestuarii hemocyanin, CaeSS2, and combine structure-based sequence alignments, tryptophan fluorescence, and glycosylation analyses to provide insights into the structural and functional organisation of CaeSS2. We identify three functional domains and three conserved histidine residues that most likely participate in the formation of the copper active site in domain 2. Oxygen-binding ability of Carcinus aestuarii Hc and its structural subunit 2 was studied using CD and fluorescence spectroscopy. Removing the copper dioxygen system from the active site led to a decrease of the melting temperature, which can be explained by a stabilizing effect of the binding metal ion. To study the quenching effect of the active site copper ions in hemocyanins, the copper complex Cu(II)(PuPhPy)2+ was used, which appears as a very strong quencher of the tryptophan emission. Furthermore, the structural localization was clarified and found to explain the observed fluorescence behavior of the protein. Sugar analysis reveals that CaeSS2 is glycosylated, and oligosaccharide chains connected to three O-glycosylated and one N-glycosylated sites were found.  相似文献   

20.
The fibrillation propensity of the multidomain protein human serum albumin (HSA) was analyzed under different solution conditions. The aggregation kinetics, protein conformational changes upon self-assembly, and structure of the different intermediates on the fibrillation pathway were determined by means of thioflavin T (ThT) fluorescence and Congo Red absorbance; far- and near-ultraviolet circular dichroism; tryptophan fluorescence; Fourier transform infrared spectroscopy; x-ray diffraction; and transmission electron, scanning electron, atomic force, and microscopies. HSA fibrillation extends over several days of incubation without the presence of a lag phase, except for HSA samples incubated at acidic pH and room temperature in the absence of electrolyte. The absence of a lag phase occurs if the initial aggregation is a downhill process that does not require a highly organized and unstable nucleus. The fibrillation process is accompanied by a progressive increase in the β-sheet (up to 26%) and unordered conformation at the expense of α-helical conformation, as revealed by ThT fluorescence and circular dichroism and Fourier transform infrared spectroscopies, but changes in the secondary structure contents depend on solution conditions. These changes also involve the presence of different structural intermediates in the aggregation pathway, such as oligomeric clusters (globules), bead-like structures, and ring-shaped aggregates. We suggest that fibril formation may take place through the role of association-competent oligomeric intermediates, resulting in a kinetic pathway via clustering of these oligomeric species to yield protofibrils and then fibrils. The resultant fibrils are elongated but curly, and differ in length depending on solution conditions. Under acidic conditions, circular fibrils are commonly observed if the fibrils are sufficiently flexible and long enough for the ends to find themselves regularly in close proximity to each other. These fibrils can be formed by an antiparallel arrangement of β-strands forming the β-sheet structure of the HSA fibrils as the most probable configuration. Very long incubation times lead to a more complex morphological variability of amyloid mature fibrils (i.e., long straight fibrils, flat-ribbon structures, laterally connected fibers, etc.). We also observed that mature straight fibrils can also grow by protein oligomers tending to align within the immediate vicinity of the fibers. This filament + monomers/oligomers scenario is an alternative pathway to the otherwise dominant filament + filament manner of the protein fibril's lateral growth. Conformational preferences for a certain pathway to become active may exist, and the influence of environmental conditions such as pH, temperature, and salt must be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号