首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport and accumulation of phytohemagglutinin in developing bean (Phaseolus vulgaris L.) cotyledons is accompanied by the transient presence of N-acetylglucosamine (GlcNAc) residues on the oligosaccharide sidechains of this glycoprotein. These peripheral GlcNAc residues can be distinguished from those in the chitobiose portion of the oligosaccharide sidechains by their sensitivity to removal by the exoglycosidase β-N-acetylglucosaminidase. GlcNAc residues sensitive to removal by β-N-acetylglucosaminidase are present not only on phytohemagglutinin, but also on other newly synthesized proteins. The enzyme UDPGlcNAc:glycoprotein GlcNAc-transferase which transfers GlcNAc residues to glycoproteins was first described by Davies and Delmer (Plant Physiol 1981 68: 284-291). The data presented here show that this enzyme is associated with the Golgi complex of developing cotyledons.  相似文献   

2.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

3.
Human lysosomal β-N-acetylhexosaminidases from the family 20 of glycoside hydrolases are dimeric enzymes catalysing the cleavage of terminal β-N-acetylglucosamine and β-N-acetylgalactosamine residues from a broad spectrum of glycoconjugates. Here, we present a facile, robust, and cost-effective extracellular expression of human β-N-acetylhexosaminidase B in Pichia pastoris KM71H strain. The prepared Hex B was purified in a single step with 33% yield obtaining 10 mg of the pure enzyme per 1 L of the culture media. The enzyme was used in the inhibition assays with the known mechanism-based inhibitor NAG-thiazoline and a wide variety of its derivatives in the search for specific inhibitors of the human GH20 β-N-acetylhexosaminidases over the human GH84 β-N-acetylglucosaminidase, which was expressed, purified and used in the inhibition experiments as well. Moreover, enzyme-inhibitor complexes were analysed employing computational tools in order to reveal the structural basis of the results of the inhibition assays, showing the importance of water-mediated interactions between the enzyme and respective ligands. The presented method for the heterologous expression of human Hex B is robust, it significantly reduces the costs and equipment demands in comparison to the expression in mammalian cell lines. This will enhance accessibility of this human enzyme to the broad scientific community and may speed up the research of specific inhibitors of this physiologically important glycosidase family.  相似文献   

4.
The α- and β-N-acetylglucosaminidase activity of the limpet Patella vulgata (L.) is due to two enzymes. One of these enzymes hydrolyses both α- and β-N-acetylglucosaminidases and is referred to α,β-N-acetylglucosaminidase. The other is a β-N-acetylglucosaminidase (EC 3.2.1.30). Both enzymes have been isolated and characterized as glycoproteins containing 12% hexose, mainly galactose. The amino acid, neutral sugar and amino sugar content of the two enzymes is very similar, and the main difference lies in the presence of 9% sialic acid in β-N-acetylglucosaminidase. The molecular weight of α,β-N-acetylglucosaminidase is 217 000 and that of β-N-acetylglucosaminidase is 136 000. Evidence has been obtained for the presence of an additional sub-unit in the α,β-enzyme.  相似文献   

5.
The present study describes an efficient chemoenzymatic method for introducing a core N-glycan of glycoprotein origin into various lipophilic natural products. It was found that the endo-β-N-acetylglucosaminidase from Arthrobactor protophormiae (Endo-A) had broad substrate specificity and can accommodate a wide range of glucose (Glc)- or N-acetylglucosamine (GlcNAc)-containing natural products as acceptors for transglycosylation, when an N-glycan oxazoline was used as a donor substrate. Using lithocholic acid as a model compound, we have shown that introduction of an N-glycan could be achieved by a two-step approach: chemical glycosylation to introduce a monosaccharide (Glc or GlcNAc) as a handle, and then Endo-A catalyzed transglycosylation to accomplish the site-specific N-glycan attachment. For those natural products that already carry terminal Glc or GlcNAc residues, direct enzymatic transglycosylation using sugar oxazoline as the donor substrate was achievable to introduce an N-glycan. It was also demonstrated that simultaneous double glycosylation could be fulfilled when the natural product contains two Glc residues. This chemoenzymatic method is concise, site-specific, and highly convergent. Because N-glycans of glycoprotein origin can serve as ligands for diverse lectins and cell-surface receptors, introduction of a defined N-glycan into biologically significant natural products may bestow novel properties onto these natural products for drug discovery and development.  相似文献   

6.
β-N-Acetylglucosaminidase is a major glycosidase involved in several physiological processes, such as fertilization, metamorphosis, glycoconjugate degradation, and glycoprotein biosynthesis in insects. A search using the Bombyx mori cDNA database revealed the existence of two putative β-N-acetylglucosaminidase genes. Their full-length cDNAs were cloned by rapid amplification of cDNA ends and polymerase chain reaction using specific primers, and named BmGlcNAcase1 and BmGlcNAcase2. A BLAST search revealed that BmGlcNAcase1 and BmGlcNAcase2 are homologous to a β-subunit homolog encoded by Drosophila melanogaster HEXO2 and the Spodoptera frugiperda β-N-acetylglucosaminidase gene respectively. The recombinant proteins of BmGlcNAcase1 and BmGlcNAcase2 without putative transmembrane domains were expressed in the yeast Pichia pastoris. Both enzymes showed broad substrate specificity, and cleaved terminal N-acetylglucosamine residues from the α-3 and α-6 branches of a biantennary N-glycan substrate, and also hydrolyzed chitotriose to chitobiose.  相似文献   

7.
We have examined the characteristics of binding to wheat germ agglutinin-Sepharose of β-N-acetylglucosaminidase and β-galactosidase from aleurone layers of resting wheat grains. Although the enzymes interacting with wheat germ agglutinin-Sepharose could be extracted by a procedure which did not involve any solubilizing treatments, the highest activity of these enzymes was obtained by extracting and sonicating the tissues in the presence of 0.5% Triton X-100. The pH optimum and time-course of binding as well as the effect of some divalent ions on the binding were studied. The largest part of the bound enzymes was eluted at low concentration of N-acetyl-D-glucosamine (0.05 M), although smaller amounts were still eluted at higher molarities (0.1 and 0.2 M). D-Mannose, D-glucose and L-fucose failed to replace N-acetyl-D-glucosamine in eluting the enzymes bound to wheat germ agglutinin-Sepharose, whereas N-acetyl-D-galactosamine was much less effective than N-acetyl-D-glucosamine. The catalytic properties of the enzymes remained unchanged after the binding to wheat germ agglutinin-Sepharose, although the Km values of the free and lectin-bound enzymes were slightly different. A rapid and easy three-step procedure of purification, mainly based on affinity chromatography on wheat germ agglutinin-Sepharose, is described. It allows purification of β-galactosidase and β-N-acetylglucosaminidase over 200-fold. β-N-Acetylglucosaminidase has been further purified to electrophoretic homogeneity and also characterized.  相似文献   

8.
The extracellular chitinase produced by Serratia marcescens was obtained in highly purified form by adsorption-digestion on chitin. After gel electrophoresis in a nondenaturing system, the purified preparation exhibited two major protein bands that coincided with enzymatic activity. A study of the enzyme properties showed its suitability for the analysis of chitin. Thus, the chitinase exhibited excellent stability, a wide pH optimum, and linear kinetics over a much greater range than similar enzymes from other sources. The major product of chitin hydrolysis was chitobiose, which was slowly converted into free N-acetylglucosamine by traces of β-N-acetylglucosaminidase present in the purified preparation. The preparation was free from other polysaccharide hydrolases. Experiments with radiolabeled yeast cell walls showed that the chitinase was able to degrade wall chitin completely and specifically.  相似文献   

9.
10.
Endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae was activated by the addition of glucose, mannose, N-acetylglucosamine, and β-allose. While the enzyme did not appear to be significantly affected by the addition of galactose or N-acetylgalactosamine. These results indicate that the C-4 and C-6 positions of the monosaccharide are the most important for enzyme activation. Moreover, the enzyme was activated by the addition of disaccharides such as cellobiose, gentiobiose, and di-N-acetylchitobiose, but not by polysaccharides such as starch and yeast mannan. In the presence of N-acetylglucosamine, the enzyme activation occurred well over pH 4.0 and the Km value of the enzyme for (Man)6(GlcNAc)2-Asn-dansyl changes from 1.2 mM to 3.2 mM.  相似文献   

11.
UDP-N-Acetylglucosamine: α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT-I) is an essential enzyme in the conversion of high mannose type oligosaccharide to the hybrid or complex type. The full length of the rat GnT-I gene was expressed in the filamentous fungus Aspergillus oryzae. A microsomal preparation from a recombinant fungus (strain NG) showed GnT-I activity that transferred N-acetylglucosamine residue to acceptor heptaose, Man5GlcNAc2. The N-linked sugar chain of α-amylase secreted by the strain showed a peak of novel retention on high performance liquid chromatography that was same as a reaction product of in vitro GnT-1 assay. The peak of oligosaccharide disappeared on HPLC after β-N-acetylglucosaminidase treatment. Mass analysis supported the presence of GlcNAcMan5GlcNAc2 as a sugar chain of α-amylase from strain NG. Chimera of GnT-I with green fluorescent protein (GFP) showed a dotted pattern of fluorescence in the mycelia, suggesting localization at Golgi vesicles. We concluded that GnT-1 was functionally expressed in A. oryzae cells and that N-acetylglucosamine residue was transferred to N-glycan of α-amylase in vivo. A. oryzae is expected to be a potential host for the production of glycoprotein with a genetically altered sugar chain.  相似文献   

12.
13.
We studied the role of surface GlcNAc residues on the surface of invasive (mouse-blood and insect-derived trypomastigotes) and non-invasive amastigote forms of Trypanosoma cruzi on parasite association with (i.e., surface binding plus internalization) macrophages and heart myoblasts. Removal of GlcNAc from the three forms of the parasite with β-N-acetylglucosaminidase markedly increased the number of organisms per 100 cells and caused the organisms to associate with a greater percentage of host cells. N-Acetylglucosaminidase did not produce this effect after heat-inactivation and a substrate of the enzyme, N,N′-diacetylchitobiose, reduced it when it was present during the enzymatic treatment. The N-acetylglucosaminidase effect on T. cruzi was reversible after 2.5 h. When macrophages or myoblasts were treated with N-acetylglucosaminidase, their capacities to associate with blood or insect-derived trypomastigotes was reduced. Since removal of GlcNAc residues from the parasite surface increased their association with the host cells, GlcNAc would appear to interfere with the association process. On the other hand, GlcNAc residues on the host cell appear to favor the association.  相似文献   

14.
The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification is an important, regulatory modification of cytosolic and nuclear enzymes. To date, no 3-dimensional structures of O-GlcNAc-modified proteins exist due to difficulties in producing sufficient quantities with either in vitro or in vivo techniques. Recombinant co-expression of substrate protein and O-GlcNAc transferase in Escherichia coli was used to produce O-GlcNAc-modified domains of human cAMP responsive element-binding protein (CREB1) and Abelson tyrosine-kinase 2 (ABL2). Recombinant expression in E. coli is an advantageous approach, but only small quantities of insoluble O-GlcNAc-modified protein were produced. Adding β-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-dexoy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), to the culture media provided the first evidence that an E. coli enzyme cleaves O-GlcNAc from proteins in vivo. With the inhibitor present, the yields of O-GlcNAc-modified protein increased. The E. coli β-N-acetylglucosaminidase was isolated and shown to cleave O-GlcNAc from a synthetic O-GlcNAc-peptide in vitro. The identity of the interfering β-N-acetylglucosaminidase was confirmed by testing a nagZ knockout strain. In E. coli, NagZ natively cleaves the GlcNAc-β1,4-N-acetylmuramic acid linkage to recycle peptidoglycan in the cytoplasm and cleaves the GlcNAc-β-O-linkage of foreign O-GlcNAc-modified proteins in vivo, sabotaging the recombinant co-expression system.  相似文献   

15.
The effects of several hormone treatments on chick oviduct acid hydrolases were studied; including the effect of those treatments on the isozymes of β-N-acetylglucosaminidase. Chicks were treated for 10 days with diethylstilbestrol after which they were treated with progesterone alone, diethylstilbestrol alone, progesterone and diethylstilbestrol, or withdrawn from all hormone treatment. Protease and acid phosphatase were increased four- to fivefold upon hormone withdrawal, but they were not increased by any of the other treatments. β-N-Acetylglucosaminidase, however, increased fourfold upon hormone withdrawal and progesterone alone or progesterone and diethylstilbestrol treatment. In addition to the increase in β-N-acetylglucosaminidase activity, isozyme II increased from 20 to 35% of the total activity upon withdrawal (but not the other treatments). Isozyme I is the only form of the enzyme found in egg white.  相似文献   

16.
17.
A simple procedure for the detection of endo-β-N-acetylglucosaminidase H activity is described. The method utilizes N-[14C]methylribonuclease B as substrate. This is prepared from ribonuclease B by reductive alkylation of free amine groups in the protein with [14C]formaldehyde. Because the carbohydrate moiety of ribonuclease B has α-mannosyl residues at nonreducing terminal positions, the radioactive molecule binds to Sepharose-concanavalin A. Endo-β-N-acetylglucosaminidase action releases this mannose-containing oligosaccharide by splitting the di-N-acetylchitobiosyl residue that links it with the peptide and thereby renders the radioactive portion of the molecule unreactive with Sepharose-concanavalin A. This forms the basis of a convenient assay for screening column fractions during the purification of the endoglycosidase. Although protease or α-mannosidase activity might also be detected by the procedure, no difficulties were presented by these enzymes when the assay was used for the preparation of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus.  相似文献   

18.
The degradation of detrital organic matter and assimilation of carbon (C), nitrogen (N), and phosphorus (P) by heterotrophic microbial communities is mediated by enzymes released into the environment (ecoenzymes). For the attached microbial communities of soils and freshwater sediments, the activities of β-glucosidase, β-N-acetylglucosaminidase, leucine aminopeptidase, and phosphatase show consistent stoichiometric patterns. To determine whether similar constraints apply to planktonic communities, we assembled data from nine studies that include measurements of these enzyme activities along with microbial productivity. By normalizing enzyme activity to productivity, we directly compared the ecoenzymatic stoichiometry of aquatic biofilm and bacterioplankton communities. The relationships between β-glucosidase and α-glucosidase and β-glucosidase and β-N-acetylglucosaminidase were statistically indistinguishable for the two community types, while the relationships between β-glucosidase and phosphatase and β-glucosidase and leucine aminopeptidase significantly differed. For β-glucosidase vs. phosphatase, the differences in slope (biofilm 0.65, plankton 1.05) corresponded with differences in the mean elemental C:P ratio of microbial biomass (60 and 106, respectively). For β-glucosidase vs. leucine aminopeptidase, differences in slope (0.80 and 1.02) did not correspond to differences in the mean elemental C:N of biomass (8.6 and 6.6). β-N-Acetylglucosaminidase activity in biofilms was significantly greater than that of plankton, suggesting that aminosaccharides were a relatively more important N source for biofilms, perhaps because fungi are more abundant. The slopes of β-glucosidase vs. (β-N-acetylglucosaminidase + leucine aminopeptidase) regressions (biofilm 1.07, plankton 0.94) corresponded more closely to the estimated difference in mean biomass C:N. Despite major differences in physical structure and trophic organization, biofilm and plankton communities have similar ecoenzymatic stoichiometry in relation to productivity and biomass composition. These relationships can be integrated into the stoichiometric and metabolic theories of ecology and used to analyze community metabolism in relation to resource constraints.  相似文献   

19.
Glucosamine and mannose were incorporated into oligosaccharides linked to either polar membrane-lipids or to asparagine residues of endogenous proteins in apical growing tissues of the etiolated pea stem. The glycolipids were subject to turnover in pulse-chase tests and protein-linked oligosaccharides accumulated with time, as expected for a precursor-product relationship. The newly formed glycoproteins were hydrolyzed by endo-β-N-acetylglucosaminidase H to oligosaccharides in the same size range as those released by dilute acid from the lipid-linked oligosaccharides formed during the pulse. The glycoproteins were also partly degraded to free N-acetylglucosamine by β-N-acetylhexosaminidase. Affinity of the carbohydrate moiety of the protein for concanavalin A increased between the beginning and the end of the chase, indicating processing following core glycosylation.

The addition of UDP-N-acetyl-[14C]glucosamine plus external peptide acceptors (derived from carboxymethylated α-lactalbumin) to membrane preparations from the pea stem resulted in peptide glycosylation at the expense of lipid-linked oligosaccharide. Glycosylation of endogenous protein acceptors did not take place via lipid intermediates but directly from the sugar nucleotide substrate. Tunicamycin inhibited glycosyltransfer to both glycolipids and added peptides, but not to endogenous protein. It is concluded that limiting factors for N-glycosylation by pea membranes in vitro could include the unavailability of endogenous acceptors or the inability to fully elongate and internalize lipid precursors, but is not due to any limitation in capacity for N-glycosylation.

  相似文献   

20.
The sugar composition of the surface glycoprotein from Friend murine leukemia virus was determined by gas-liquid chromatography of the alditol acetates and by the thiobarbituric acid method, respectively. N-Acetylglucosamine, mannose, galactose, sialic acid and fucose were found in a molar ratio around 15.2:11.6:7.4:3.3:1.0. Ten ogligosaccharide fractions were obtained from glycoprotein preparations by a suitable sequence of degradation (with pronase, endo-β-N-acetylglucosaminidase H, neuraminidase, and by hydrazinolysis) and separation procedures (concanavalin A-affinity chromatography and gel filtration). The qualitative sugar composition of these fractions was analyzed by in vivo labelling with D-[6-3H]glucosamine, D-[2-3H]mannose, D-[6-3H]galactose, or L-[6-3H]fucose, and their molecular weights were estimated from the gel elution volumina. Four fractions of N-glycosidically linked oligosaccharides of the oligomannosidic (‘high mannose’) type oligomannosidic7-oligomannosidic10, about seven to ten sugar residues), two of the mixed (M11 and M12), and four of the N-acethyllactosaminic (‘complex’) type (N-acetyllactosaminic9, probably nine sugar residues; (N-acetyllactosaminica-N-acetyllactosaminicc, size unknown) were thus identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号