首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

2.
An extramitochondrial acetyl-CoA hydrolase (EC 3.1.2.1) purified from rat liver was inactivated by heavy metal cations (Hg2+, Cu2+, Cd2+ and Zn2+), which are known to be highly reactive with sulfhydryl groups. Their order of potency for enzyme inactivation was Hg2+ greater than Cu2+ greater than Cd2+ greater than Zn2+. This enzyme was also inactivated by various sulfhydryl-blocking reagents such as p-hydroxymercuribenzoate (PHMB), N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and iodoacetate (IAA). DL-Dithiothreitol (DTT) reversed the inactivation of this enzyme by DTNB markedly, and that by PHMB slightly, but did not reverse the inactivations by NEM, DTNB and IAA. Benzoyl-CoA (a substrate-like competitive inhibitor) and ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by PHMB, NEM, DTNB and IAA. These results suggest that the essential sulfhydryl groups are on or near the substrate binding site and nucleotide binding site. The enzyme contained about four sulfhydryl groups per mol of monomer, as estimated with DTNB. When the enzyme was denatured by 4 M guanidine-HCl, about seven sulfhydryl groups per mol of monomer reacted with DTNB. Two of the four sulfhydryl groups of the subunit of the native enzyme reacted with DTNB first without any significant inactivation of the enzyme, but its subsequent reaction with the other two sulfhydryl groups seemed to be involved in the inactivation process.  相似文献   

3.
The soybean urease (urea amidohydrolase; EC 3.5.1.5) was investigated to elucidate the presence of sulfhydryl (–SH) groups and their significance in urea catalysis with the help of various –SH group specific reagents. The native urease incubated with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) showed exponential increase in the absorbance, thereby revealing the presence of –SH groups. A total of 34 –SH groups per hexamer enzyme molecule were estimated from the absorption studies which represents nearly six –SH groups per subunit. The time-dependent inactivation of urease with DTNB, p-chloromercuribenzoate (p-CMB), N-ethylmaleimide (NEM) and iodoacetamide (IAM) showed biphasic kinetics, where half of the enzyme activity was lost more rapidly than the other half. This study reveals the presence of two categories of “accessible” –SH groups, one category being more reactive than the other. The inactivation of urease by p-CMB was largely reversed on treatment with cysteine, which might be due to unblocking of –SH group by mercaptide exchange reaction. Finally, when NEM inactivated urease was incubated with sodium fluoride, a time-dependent regain of activity was observed with higher concentrations of fluoride ion.  相似文献   

4.
The number of reactive cysteine residues of yeast RNA polymerase I was determined and their function was studied using parachloromercury benzoate (pCMB), dithiobisnitrobenzoate (DTNB) and N-ethyl-maleimide (NEM) as modifying agents. By treatment with DTNB about 45 sulfhydryl groups react in the presence of 8M urea. Under non-denaturing conditions only 20 sulfhydryl groups are reactive with pCMB and DTNB. Both reagents completely inactivate the enzyme and this effect can be reversed by reducing agents. The sedimentation coefficient and the subunit composition are not affected when the enzyme is inactivated. Two of the most reactive sulfhydryl groups are necessary for activity. The modification of these groups is partially protected by substrates and DNA, suggesting that they are involved either in catalysis or in the maintenance of the conformation of the active site. Experiments with 14C-NEM indicate that the most reactive groups are located in subunits of 185,000, 137,000 and 41,000 daltons.  相似文献   

5.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The number of exposed sulfhydryl groups in cattle rod photoreceptor membranes has been determined in suspension and after solubilization in various detergents both before and after illumination.2. In suspensions, two sulfhydryl groups are modified per mole of rhodopsin, both by Ellman's reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, while no extra SH groups are uncovered upon illumination. Neither reagent affects the spectral integrity of rhodopsin at 500 nm and the recombination capacity is retained upon modification of both rhodopsin and opsin.3. However, in detergents (digitonin, Triton X-100 and cetyltrimethylammonium bromide (CTAB)) 2–3 additional sulfhydryl groups appear upon illumination, in agreement with earlier reports.4. A total number of six sulfhydryl groups and two disulfide bridges are found in rod photoreceptor membranes, expressed per mole of rhodopsin.5. DTNB reacts somewhat faster with membrane suspensions after than before illumination. The less reactive sulfhydryl modifying agents O-methylisourea and methyl-p-nitrobenzene sulfonate show a similar behavior.6. It is concluded that illumination of rhodopsin in vivo will not uncover additional SH groups, although the reactivity of one exposed SH group may increase somewhat. These findings also exclude a role of SH groups in the covalent binding of the chromophore.  相似文献   

7.
Penalbumin (PEN), a newly discovered sulfhydryl-containing glycoprotein from egg whites of penguins(Sphenisciformes), is a major constituent of all penguin egg whites studied, but it is low or very low in most other egg whites studied. Adelie penguin(Pygoscelis adeliae) egg white contains ~30% ovalbumin (POVAL) and 25% PEN, while chicken egg white contains ~55% ovalbumin (COVAL) and <0.01% PEN. PEN has a molecular weight of 61,000 and contains 15% carbohydrate and two sulfhydryl groups, but no phosphates. POVAL has a molecular weight of 48,000 and contains 7% carbohydrate, three sulfhydryl groups, and one phosphate. Penguin serum albumin (PSA) has properties which are very similar to bovine serum albumin (BSA), and the composition and properties of PEN were suggestive of an ancestral relationship to POVAL and COVAL. PEN reacts slowly with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), while POVAL reacts rapidly. On simultaneous addition of DTNB and cystamine (β,β′-diaminodiethyl disulfide) the rate of reaction with PEN was increased, but not with POVAL.  相似文献   

8.
Phosphoribosylpyrophosphate synthetase from Salmonella typhimurium contains four cysteine residues per subunit. Three of these react readily with 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB), forming an active derivative with kinetic and physical properties similar to the native enzyme, but one reacts only under denaturing conditions. Stoichiometric amounts of KMnO4 inactivate the DTNB-treated enzyme. The loss of activity is correlated with the oxidation of the remaining cysteinyl group to cysteic acid by KMnO4. Amino acid analysis indicates that no other residues are altered. The rate of inactivation of the enzyme is decreased 30-fold by saturatin g concentrations of the substrate ATP. Inorganic phosphate also protects substantially against KMnO4. Titration of the native enzyme with limiting amounts of KMnO4 shows that the sulfhydryl group essential for activity competes effectively with the other sulfhydryl groups for KMnO4. These results suggest that the essential sulfhydryl group is near the active site, and that KMnO4, a phosphate analogue, can act as an active site-directed reagent at the ATP binding site of the enzyme. The KMnO4-oxidized enzyme is more highly aggregated than untreated enzyme and fails to bind ATP appreciably.  相似文献   

9.
Incubation of human placental aldose reductase (EC 1.1.1.21) with the sulfhydryl oxidizing reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM) results in a biexponential loss of catalytic activity. Inactivation by DTNB or NEM is prevented by saturating concentrations of NADPH. ATP-ribose offers partial protection against inactivation by DTNB, whereas NADP, nicotinamide mononucleotide (NMN), and the substrates glyceraldehyde and glucose offer little or no protection. The inactivation by DTNB was reversed by dithiothreitol and partially by 2-mercaptoethanol but not by KCN. When the release of 2-nitro-5-mercaptobenzoic acid was measured, 3 mol of sulfhydryl residues was found to be modified per mole of the enzyme by DTNB. Correlation of the fractional activity remaining with the extent of modification by the statistical method of C.-L. Tsou (1962, Sci. Sin. 11, 1535-1558) indicates that of the three reactive residues, one reacts at a faster rate than the other two, and that two residues are essential for the catalytic activity of the enzyme. Labeling of the total sulfhydryl by [14C]NEM and quantification of DTNB-reactive residues in the enzyme denatured by 6 M urea indicates that a total of seven sulfhydryl residues are present in the protein. The modification of the enzyme did not affect Km glyceraldehyde, but the modified enzyme had a lower Km NADPH. Kinetic analysis of the data suggests that a biexponential nature of inactivation could be due to the formation of a dissociable E:DTNB complex and the presence of a partially active enzyme species.  相似文献   

10.
Summary In this study, the consequences of modification of human erythrocyte membrane sulfhydryl groups by N-ethyl maleimide (NEM), 5,5dithiobis-(2-nitrobenzoic acid) (DTNB) andp-hydroxymercuriphenyl sulfonate (PHMPS) were investigated. These reagents differ in chemical reactivity, membrane penetrability and charge characteristics.Results of sulfhydryl modification were analyzed in terms of inhibitory effects on activities of five membrane enzymes; Mg++- and Na+, K+-ATPase, K+-dependent and independentp-nitrophenyl phosphatase (NPPase) and DPNase. Structural considerations involved in the sulfhydryl-mediated inhibition were evaluated by studying the changes in susceptibility to sulfhydryl alteration produced by shearing membranes into microvesicles and by the addition of the membrane modifiers, Mg++ and ATP.Conclusions from the data suggest that the effects of NEM appeared to result from modification of a single class of sulfhydryls; DTNB interacted with two different sulfhydryl classes. Increasing concentrations of PHMPS resulted in the sequential modification of many types of sulfhydryls, presumably as a result of increasing membrane structural disruption. DTNB and PHMPS caused solubilization of about 15% of membrane protein at concentrations giving maximal enzyme inhibition.In contrast to the usually observed parallels between Na+, K+-ATPase and K+-dependent NPPase, activities of Mg++-ATPase, Na+, K+-ATPase and K+-dependent NPPase varied independently as a result of sulfhydryl modification. We suggest complex structural and functional relationships exist among these components of the membrane ATP-hydrolyzing system.Our studies indicate that the effects of sulfhydryl group reagents on these membrane systems should not be ascribed to sulfhydryl modificationper se, but rather to the resulting structural perturbations. These effects depend upon the structural characteristics of the particular membrane preparation studied and on the chemical characteristics of the sulfhydryl group reagent used.  相似文献   

11.
N-ethylmaleimide (NEM), a reagent that alkylates free sulfhydryl groups, was shown to be a highly effective inhibitor of the following coupled mitochondrial processes: oxidative phosphorylation, ATP-32Pi exchange, Pi-induced light scattering and configurational changes, State III respiration, valinomycin-induced translocation of potassium with Pi as the anion, and calcium accumulation in presence of Pi. However, NEM was less effective or ineffective in inhibiting some processes that do not require inorganic Pi, namely electron transfer and ATPase activity, ADP binding, energized light scattering changes induced by arsenate and nonenergized light scattering changes induced by acetate. The rate of oxidative phosphorylation and of ATP-32Pi exchange was normal in ETPH particles prepared from NEM-treated mitochondria. Also NEM, even et levels 2–3 times greater than those required to inhibit oxidative phosphorylation in intact mitochondria, did not inhibit coupled processes in submitochondrial particles. We are proposing that NEM alkylates sulfhydryl groups in the mitochondrion that modulate Pi translocation, and that the suppression of Pi translocation blocks oxidative phosphorylation, the Pi-dependent energized configurational change in mitochondria and Pi-dependent transport processes.On leave of absence from the Department of Biochemistry, Cancer Institute Okayama University Medical School, Okayama, Japan.On leave of absence from the Department of Pathology, Nagoya University Medical School, Nagoya, Japan.  相似文献   

12.
《BBA》2006,1757(9-10):1155-1161
The spatial arrangement and chemical reactivity of the activation-dependent thiol in the mitochondrial Complex I was studied using the membrane penetrating N-ethylmaleimide (NEM) and non-penetrating anionic 5,5′-dithiobis-(2-nitrobenzoate) (DTNB) as the specific inhibitors of the enzyme in mitochondria and inside-out submitochondrial particles (SMP). Both NEM and DTNB rapidly inhibited the de-activated Complex I in SMP. In mitochondria NEM caused rapid inhibition of Complex I, whereas the enzyme activity was insensitive to DTNB. In the presence of the channel-forming antibiotic alamethicin, mitochondrial Complex I became sensitive to DTNB. Neither active nor de-activated Complex I in SMP was inhibited by oxidized glutathione (10 mM, pH 8.0, 75 min). The data suggest that the active/de-active transition sulfhydryl group of Complex I which is sensitive to inhibition by NEM is located at the inner membrane–matrix interface. These data include the sidedness dependency of inhibition, effect of pH, ionic strength, and membrane bilayer modification on enzyme reactivity towards DTNB and its neutral analogue.  相似文献   

13.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

14.
Both purified and functionally reconstituted bovine heart mitochondrial transhydrogenase were treated with various sulfhydryl modification reagents in the presence of substrates. In all cases, NAD+ and NADH had no effect on the rate of inactivation. NADP+ protected transhydrogenase from inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in both systems, while NADPH slightly protected the reconstituted enzyme but stimulated inactivation in the purified enzyme. The rate of N-ethylmaleimide (NEM) inactivation was enhanced by NADPH in both systems. The copper-(o-phenanthroline)2 complex [Cu(OP)2] inhibited the purified enzyme, and this inhibition was substantially prevented by NADP+. Transhydrogenase was shown to undergo conformational changes upon binding of NADP+ or NADPH. Sulfhydryl quantitation with DTNB indicated the presence of two sulfhydryl groups exposed to the external medium in the native conformation of the soluble purified enzyme or after reconstitution into phosphatidylcholine liposomes. In the presence of NADP+, one sulfhydryl group was quantitated in the nondenatured soluble enzyme, while none was found in the reconstituted enzyme, suggesting that the reactive sulfhydryl groups were less accessible in the NADP+-enzyme complex. In the presence of NADPH, however, four sulfhydryl groups were found to be exposed to DTNB in both the soluble and reconstituted enzymes. NEM selectively reacted with only one sulfhydryl group of the purified enzyme in the absence of substrates, but the presence of NADPH stimulated the NEM-dependent inactivation of the enzyme and resulted in the modification of three additional sulfhydryl groups. The sulfhydryl group not modified by NEM in the absence of substrates is not sterically hindered in the native enzyme as it can still be quantitated by DTNB or modified by iodoacetamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
DTNB has been found to react quantitatively with sulfite ion liberating two moles of 3-carboxylato-4-nitro-thiophenolate ion. While this reaction provides a quantitative measurement of sulfite ion, it also provides quantitative interference with the determination of sulfhydryl groups in proteins. Thiosulfate also interferes with the sulfhydryl determinations using DTNB and the equilibrium constant for the reaction formulated as Eq. (3) is (4.8 ± 0.2) × 10?2 at pH 7.75 and at ionic strength of 0.4.  相似文献   

16.
The spatial arrangement and chemical reactivity of the activation-dependent thiol in the mitochondrial Complex I was studied using the membrane penetrating N-ethylmaleimide (NEM) and non-penetrating anionic 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) as the specific inhibitors of the enzyme in mitochondria and inside-out submitochondrial particles (SMP). Both NEM and DTNB rapidly inhibited the de-activated Complex I in SMP. In mitochondria NEM caused rapid inhibition of Complex I, whereas the enzyme activity was insensitive to DTNB. In the presence of the channel-forming antibiotic alamethicin, mitochondrial Complex I became sensitive to DTNB. Neither active nor de-activated Complex I in SMP was inhibited by oxidized glutathione (10 mM, pH 8.0, 75 min). The data suggest that the active/de-active transition sulfhydryl group of Complex I which is sensitive to inhibition by NEM is located at the inner membrane-matrix interface. These data include the sidedness dependency of inhibition, effect of pH, ionic strength, and membrane bilayer modification on enzyme reactivity towards DTNB and its neutral analogue.  相似文献   

17.
The effects of specific sulfhydryl reagents, N-ethylmaleimide (NEM), p-chloromercuribenzoic acid (PCMB) and 5-5'-dithiobis(2-nitrobenzoic acid) (DTNB), were tested on the vasoactive intestinal peptide (VIP) receptor binding capacity of the human superficial melanoma-derived IGR39 cells. On intact cell monolayers NEM and PCMB inhibit the specific [125I]VIP binding in a time and dose-dependent manner while DTNB has no effect at any concentration tested. Inhibitory effects of NEM and PCMB on high and low affinity VIP receptor are not identical. With NEM-treated cells, only low affinity sites remained accessible to the ligand. Their affinity constant is not modified. With PCMB-treated cells, the binding capacity of high affinity sites is reduced by 56% while the binding capacity of low affinity sites is not significantly affected. For both types of binding sites, the affinity constants remain in the same range of that of untreated cells. On cells made permeable by lysophosphatidylcholine, DTNB is able to inhibit the specific [125I]VIP binding in a time and dose-dependent manner. The three sulfhydryl reagents stabilize the preformed [125I]VIP receptor complex whose dissociation in the presence of native VIP is significantly reduced. Labeling of free SH groups with tritiated NEM after preincubation of cells with DTNB and VIP made possible the characterization of reacting SH groups which probably belong to the receptor. Taken together, these data allow us to define three classes of sulfhydryl groups. In addition, it is shown that high and low affinity sites have different sensibility to sulfhydryl reagents.  相似文献   

18.
Differential chemical modification ofE. coli chaperonin 60 (cpn60) was achieved by using one of several sulfhydryl-directed reagents. For native cpn60, the three cysteines were accessible for reaction with N-ethylmaleimide (NEM), while only two of them are accessible to the larger reagent 4,4′-dipyridyl disulfide (4-PDS). However, no sulfhydryl groups were modified when the even larger reagents 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) or 2-(4′-(iodoacetamido)anilino) naphthalene-6-sulfonic acid (IAANS), were employed, unless the chaperonin was unfolded. The cpn60 that had been covalently modified with NEM or IAANS, was not able to support the chaperonin-assisted refolding of the mitochondrial enzyme rhodanese, which also requires cpn10 and ATP hydrolysis. However, both modified forms of cpn60 were able to form binary complexes with rhodanese, as demonstrated by their ability to arrest the spontaneous refolding of the enzyme. That is, chemical modification with these sulfhydryl-directed reagents produced a species that was not prevented from interaction with partially folded rhodanese, but that was prevented from supporting a subsequent step(s) during the chaperonin-assisted refolding process.  相似文献   

19.
Light and dark modulation experiments with pea (Pisum sativum L.) chloroplast stromal fractions pretreated with dithiothreitol (to reduce protein disulfide bonds) or with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) (to block sulfhydryl groups) suggest that light modulation involves thiol-disulfide exchange on the modulatable stromal enzyme protein. Light-dependent reduction of DTNB involves a photosynthetic electron transport chain component located on the reducing side of photosystem I prior to ferredoxin; DTNB may be acting as a light effect mediator substitute. The thylakoid-bound light effect mediator system, then, in its light-activated reduced form probably catalyzes thiol-disulfide exchange reactions on stromal enzymes.  相似文献   

20.
The apoenzyme of diol dehydrase was inactivated by four sulfhydryl-modifying reagents, p-chloromercuribenzoate, 5,5′-dithiobis(2-nitrobenzoate) (DTNB), iodoacetamide, and N-ethylmaleimide. In each case pseudo-first-order kinetics was observed. p-Chloromercuribenzoate modified two sulfhydryl groups per enzyme molecule and modification of the first one resulted in complete inactivation of the enzyme. DTNB also modified two sulfhydryl groups, but modification of the second one essentially corresponded to the inactivation. In both cases, the inactivation was reversed by incubation with dithiothreitol. Cyanocobalamin, a potent competitive inhibitor of adenosylcobalamin, protected the essential residue, but not the nonessential one, against the modification by these reagents. By resolving the sulfhydryl-modified cyanocobalamin-enzyme complex, the enzyme activity was recovered, irrespective of treatment with dithiothreitol. From these results, we can conclude that diol dehydrase has two reactive sulfhydryl groups, one of which is essential for catalytic activity and located at or in close proximity to the coenzyme binding site. The other is nonessential for activity. Neitherp-chloromercuribenzoate- nor DTNB-modified apoenzyme was able to bind cyanocobalamin, whereas the iodoacetamide- and N-ethylmaleimide-modified apoenzyme only partially lost the ability to bind cyanocobalamin. The inactivation of diol dehydrase by p-chloromercuribenzoate and DTNB did not bring about dissociation of the enzyme into subunits. Total number of the sulfhydryl groups of this enzyme was 14 when determined in the presence of 6 m guanidine hydrochloride. No disulfide bond was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号