首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first complete purifications of the cytosolic and plastid isozymes of triose phosphate isomerase (TPI; EC 5.3.1.1) from higher plants including spinach (Spinacia oleracea), lettuce (Lactuca sativa), and celery (Apium graveolens). Both isozymes are composed of two isosubunits with approximate molecular weight of 27,000; in spinach and lettuce the plastid isozyme is 200 to 400 larger than the cytosolic isozyme. The two isozymes, purified from lettuce, had closely similar amino acid compositions with the exception of methionine which was four times more prevalent in the cytosolic isozyme. Partial amino acid sequences from the N-terminus were also obtained for both lettuce TPIs. Nine of the 13 positions sequenced in the two proteins had identical amino acid residues. The partial sequences of the plant proteins showed high similarity to previously sequenced animal TPIs. Immunological studies, using antisera prepared independently against the purified plastid and cytosolic isozymes from spinach, revealed that the cytosolic isozymes from a variety of species formed an immunologically distinct group as did the plastid isozymes. However, both plastid and cytosolic TPIs shared some antigenic determinants. The overall similarity of the two isozymes and the high similarity of their partial amino acid sequences to those of several animals indicate that TPI is a very highly conserved protein.  相似文献   

2.
The plastid and cytosolic isozymes of the dimeric enzyme phosphoglucose isomerase (EC 5.3.1.9) from spinach (Spinacia oleracea) and cauliflower (Brassica oleracea) were purified to apparent homogeneity. The isozymes from sunflower (Helianthus annuus) and Clarkia xantiana were partially purified. When subunits from two electrophoretically distinguishable cytosolic isozymes, either from the same or from different species, were dissociated and allowed to reassociate in each other's presence, an active hybrid enzyme, consisting of one subunit of each type, was formed in addition to the two original homodimers. Active hybrid enzymes were also formed by dissociation and reassociation of plastid isozymes. Hybrid molecules were not produced between the plastid and cytosolic subunits, suggesting that they are not able to bind with each other. Additional differences between the plastid and cytosolic isozymes are described.  相似文献   

3.
The isozymes of phosphoglyceromutase from the developing endosperm of Ricinus communis have been partially purified. The purified cytosolic and plastid isozymes have specific activities of 622.8 and 83.8 mumol min-1 mg protein-1, respectively. They both have relative molecular masses of approximately 64,000. The cytosolic enzyme has lower Km values for both 2-phosphoglycerate and 3-phosphoglycerate than the plastid enzyme. The Km values for 3-phosphoglycerate are 330 +/- 25 and 430 +/- 48 microM for the cytosolic and plastid isozymes, respectively. The corresponding Km values for 2-phosphoglycerate are 60 +/- 10 and 112 +/- 22 microM. The two isozymes also have different pH optima and heat labilities. Neither isozyme requires 2,3-bisphosphoglycerate or a divalent cation and neither is regulated by metabolites.  相似文献   

4.
Enolase activity was measured in clarified homogenates of various tissues during the life cycle of the castor oil plant (Ricinus communis L. cv Baker 296). The proportions of total activity due to the plastid and cytosolic isozymes were determined after separation by ion-exchange chromatography. The contribution of the plastid isozyme varied from more than 30% of the total at the midpoint of endosperm development to less than 1% in mature leaves and roots. During endosperm development, enolase activity increased to a peak coincident with the maximum rate of storage lipid accumulation, then decreased to nearly undetectable levels in the mature seed. Plastid enolase protein, measured using an enzyme-linked immunosorbent assay, increased in parallel with the increase in activity but decreased less rapidly and was still easily detectable in mature seeds.  相似文献   

5.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

6.
Pichersky E  Gottlieb LD 《Genetics》1983,105(2):421-436
Formal genetic analyses of the mode of inheritance of the multiple plastid and cytosolic isozymes of triose phosphate isomerase (TPI, EC 5.3.1.1) in annual diploid species of Clarkia (Onagraceae), native to California, suggest that each set of isozymes is specified by duplicate structural genes. In contrast, most diploid plant species possess one plastid and one cytosolic TPI isozyme each coded by a single locus. Linkage tests revealed that the two genes coding the plastid TPIs assort independently. Although the number of individuals sampled per species was small, the plastid isozymes were electrophoretically more variable than the cytosolic isozymes. The two gene duplications are the first reported that characterize an entire plant genus. Initial electrophoretic surveys of TPI in other genera of Onagraceae revealed that the duplication of the gene coding the plastid isozyme is apparently restricted to Clarkia, whereas that of the gene coding the cytosolic isozyme is present in most genera of the family. The separate phylogenetic distributions of the two duplications suggest that the processes that gave rise to them were unrelated.  相似文献   

7.
Rat liver phosphofructokinase isozymes   总被引:4,自引:0,他引:4  
The labile phosphofructokinase activity of rat liver was found to be stabilized and efficiently extracted in 50 mm Tris-HCl, pH 8.0, 50 mm NaF, 10 mm dithiothreitol, and 1.0 mm ATP. By the method of DEAE-cellulose chromatography liver phosphofructokinase activity could be resolved into two isozymes. The major isozyme which was 85% of the total isolated activity was purified to homogeneity. This 15,000-fold purified isozyme had a specific activity of about 90 IU/mg protein with 25–30% recovery of the total activity. Sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis of the sodium dodecyl sulfate-treated isozyme indicated a subunit molecular weight of 65,000. Antiserum to the major isozyme was obtained from rabbits, and immunotitration of the two isozymes indicated that they were immunologically different. Kinetic properties of the two isozymes indicated that the major isozyme was more susceptible to ATP and citrate inhibition as well as relief of ATP and citrate inhibition by fructose-6-P, AMP, and ammonia. With the use of DEAE-cellulose chromatography and antiserum titration of 100,000g supernatant fluids, it was shown that the two hepatic isozymes were always found together in adult, embryonic, and neoplastic liver and in kidney.  相似文献   

8.
Two distinct phosphorylase isozymes, skeletal muscle phosphorylase b and liver phosphorylase b, have been purified from skate (Raja pulchra) in a homogeneous form as judged by electrophoretic and immunological criteria. Both isozymes were dependent on AMP for activity and converted to a forms by rabbit muscle phosphorylase kinase. Their subunit molecular weight determined by sodium dodecyl sulfate-gel electrophoresis was 94,000. These isozymes were distinctly different in affinities for glycogen and AMP, while they were very similar in sensitivities to SO42?. Rabbit antibodies against each of the muscle and liver isozymes inhibited completely the respective specific antigens. No cross-reaction was observed in double diffusion tests, but some immunological relatedness of these isozymes was demonstrated by inhibition tests with antibodies. Their similarity was also shown by amino acid analyses. No evidence has been obtained that the skate possesses such an isozyme as mammalian phosphorylase L, the b form of which is inactive even in the presence of AMP. Electrophoretic studies on phosphorylases of crucian carp, toad, and snake revealed that these animals possess three isozymes which strikingly resemble mammalian isozymes in the organ-specific distribution and electrophoretic behavior.  相似文献   

9.
Procedures are described for the purification of the mitochondrial and cytosolic isozymes of phosphoenolpyruvate carboxykinase from rabbit liver. Examination of the purified isozymes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated apparent homogeneity and identical molecular weights of approximately 65,000. Gel filtration chromatography of the native isozymes, however, yielded apparent molecular weights of 68,000 and 56,000 for the cytosolic and mitochondrial isozymes, respectively. The isoelectric points as determined by chromatofocusing were 5.8 for the mitochondrial isozyme and 5.0 for the cytosolic isozyme. The purified isozymes were readily separable on ion-exchange columns, with the cytosolic isozyme showing the greater affinity. A minor amount of cross-reactivity was apparent when each isozyme was immunotitrated with polyclonal antibodies raised in goat against the opposite isozyme. Peptide maps obtained by high pressure liquid chromatography of both tryptic digests and cyanogen bromide digests of the isozymes showed that many of the peaks were not coincident, suggesting that differences in the sequences are found throughout the primary structures of the isozymes.  相似文献   

10.
The activity of purified human hexosaminidases A and B toward hyaluronic acid (HA) isolated from cultured human skin fibroblasts was investigated. The cleavage of N-acetylglucosaminyl residues to monosaccharide N-acetylglucosamines by hexosaminidase isozymes was determined in the presence and absence of purified human β-glucuronidase. The pH optima of this reaction, with and without β-glucuronidase, were 4.5 for hexosaminidase A and 4.0 for hexosaminidase B. The hydrolysis of HA by both hexosaminidase isozymes proceeds linearily for at least 18 h in the presence of β-glucuronidase. Concentrations of 0.5–5 units of either isozyme showed a linear relationship with rate of hydrolysis. Without β-glucuronidase, hexosaminidase only cleaved the terminal N-acetylglucosamine residue. However, under optimal conditions, with β-glucuronidase, the hydrolytic activity of hexosaminidase B was about 30% as efficient as that of hexosaminidase A. Approximately 70% of the HA could be degraded by 5 units of hexosaminidase A in the presence of 0.5 unit of β-glucuronidase, as opposed to 25% degraded by hexosaminidase B. These results probably reflect intrinsic differences in the activities of the two isozymes. Since the substrate (HA) did not inhibit the hydrolysis of a synthetic substrate (4-methylumbelliferyl-β-glucosaminide) by hexosaminidase B, the linear kinetics of HA hydrolysis implies no product inhibition. These data indicate that native HA can be hydrolyzed by the combined activities of β-glucuronidase with hexosaminidase A or hexoaminidase B.  相似文献   

11.
Precursor forms of the isozymes of aspartate aminotransferase from pig heart were synthesized in vitro and purified by binding to specific antibodies. Analysis by sodium dodecylsulfate polyacrylamide gel electrophoresis showed that the precursor of the cytosolic enzyme has a similar molecular weight to that of the mature protein whereas the precursor of the mitochondrial isozyme has a molecular weight greater than that of the corresponding mature protein (ΔMW ? 2500). Preliminary sequence studies seem to suggest that the precursor of the mitochondrial isozyme has an extra N-terminal peptide sequence while that of the cytosolic protein has only an extra N-terminal methionine residue.  相似文献   

12.
Two isozymes of alcohol dehydrogenase from Drosophila melanogaster homozygous for the Adh-slow allele have been separated by isoelectric focusing. The isozymes differ in their temperature optima, temperature stabilities, specific activities, and at least one of their Michaelis constants. They are immunologically identical. Evidence is presented that NAD may partially convert one isozyme into another. The possible nature of these isozymic differences is discussed.  相似文献   

13.
The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.  相似文献   

14.
Summary Cytoplasmic and mitochondrial isozymes of NADP+-dependent isocitrate dehydrogenase were purified from kidney and heart tissue of an inbred strain of mice. The cytoplasmic isozyme was purified from kidney of DBA/2J mice by means of a four-step procedure which included affinity chromatography with an 8-(6-aminohexyl)-amino-NADP+-Sepharose column. The heart mitochondrial isozyme of DBA/2J mice was purified by a two-step procedure involving the use of 8-(6-aminohexyl)-amino-AMP-Sepharose and 8-(6-aminohexyl)-amino-NADP+-Sepharose columns. The specific activity of the homogeneous cytoplasmic and mitochondrial isozymes was 40 units/mg and 45 units/mg, respectively. Native and subunit molecular weights of these two isozymes were determined by chromatography on Sephadex G-100, G-150 and G-200 Superfine and polyacrylamide gel electrophoresis. Both isozymes were found to be dimers with the subunit molecular weight of approximatively 35,000. The sedimentation coefficients were determined to be 5.9 and 6.1 for the mitochondrial and cytoplasmic isozyme, respectively. The amino acid compositions of these two isozymes revealed distinct differences in arginine and proline contents. A modified procedure regarding the use of affinity columns for the purification of the weakly bound enzymes is also discussed.National Institute of Health Visiting Fellow.  相似文献   

15.
Electrophoretic and activity variants have been observed for stomach and testis aldehyde dehydrogenases, respectively, among inbred strains of the house mouse (Mus musculus). Genetic evidence was obtained for two new loci encoding these isozymes (designated Ahd-4 and Ahd-6, respectively, for the stomach and testis isozymes) which segregated independently of a number of mouse gene markers, including Ahd-1 (encoding mitochondrial aldehyde dehydrogenase) on chromosome 4, ep (pale ears), a marker for chromosome 19, on which Ahd-2 (encoding liver cytosolic aldehyde dehydrogenase) has been previously localized, and Adh-3 (encoding the stomach-specific isozyme of alcohol dehydrogenase) on chromosome 3. Recombination studies have indicated, however, that Ahd-4 and Ahd-6 are distinct but closely linked loci on the mouse genome. An extensive survey of the distribution of Ahd-1, Ahd-2, Ahd-4, and Ahd-6 alleles among 56 strains of mice is reported. No variants have been observed, so far, for the microsomal (AHD-3) and mitochondrial/cytosolic (AHD-5) isozymes previously described. This study, in combination with previous investigations on mouse aldehyde dehydrogenases, provides evidence for six genetic loci for this enzyme.  相似文献   

16.
Trametes ljubarskyi produces multiple laccase isozymes under various physicochemical conditions. During co-cultivation condition Rhodotorula mucilaginosa showed inter-specific interactions with T. ljubarskyi and hypersecretion of laccases; however, the underlying molecular mechanism is less-known. The analysis of proteomics data of co-cultivated cultures revealed the mechanism of metabolic coupling during fungal-yeast interactions. The results suggested high score GO terms related to stimulus-response, protein binding, membrane components, transport channels, oxidoreductases, and antioxidants. The SEM studies confirmed the cellular communication and their inter-specific interactions. This study allows us to deepen and refine our understanding of fungal-yeast symbiotic interaction; further, it also establishes a mutual relation by metabolic coupling for 10-fold higher laccase isozyme secretion (6532 U/ml). The purified laccase isozymes showed acidic pH optima (pH 3–4), higher thermo-stability (60 °C), and broad enzyme kinetics (Km) values. Our study also provides an in-depth understanding of laccase isozymes and their potential to degrade synthetic dyes, which may help the fungi to survive in an adverse environment.  相似文献   

17.
Two different forms of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been purified from etiolated and green leaves, respectively, of 6-day maize (Zea mays L. cv Fronica) seedlings. The procedure includes an ammonium sulfate step, an ion exchange chromatography, and a second gel filtration in Sephadex G-200 in the presence of NADP+ to take advantage of the corresponding molecular weight increase of the enzyme. The isozyme from etiolated leaves is more stable and has been purified up to 200-fold. Subunit molecular weight, measured by sodium dodecyl sulfate-gel electrophoresis, is 54,000. The active protein, under most conditions, has a molecular weight 114,000, which doubles to molecular weight 209,000 in the presence of NADP+. The association behavior of enzyme from green leaves is similar, and the molecular weight of the catalytically active protein is also similar to the form of etiolated leaves.

Glucose 6-phosphate dehydrogenase of dark-grown maize leaves isoelectric point (pI) 4.3 is replaced by a form with pI 4.9 during greening. The isozymes show some differences in their kinetic properties, Km of NADP+ being 2.5-fold higher for pI 4.3 form. Free ATP (Km = 0.64 millimolar) and ADP (Km = 1.13 millimolar) act as competitive inhibitors with respect to NADP+ in pI 4.3 isozyme, and both behave as less effective inhibitors with pI 4.9 isozyme. Magnesium ions abolish the inhibition.

  相似文献   

18.
The properties of the isozymes of pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) found in unfertilized frog egg have been compared to those found in adult tissues of Rana pipiens. Chromatographic, kinetic, and electrophoretic data indicate that, of the five electrophoretic forms found in egg, the isozyme with the least anodic mobility (isozyme I) is the same molecular species as the only isozyme found in heart, and the egg isozyme with the greatest anodic mobility (isozyme V) is identical to the major isozyme found in liver.The activity of egg isozyme I was markedly inhibited by the antibody to the skeletal muscle enzyme, which has been shown previously to cross-react with the cardiac enzyme, but was unaffected by the antibody to liver isozyme V; the opposite effects were observed with egg isozyme V. The antibody to the skeletal muscle enzyme inhibited egg isozymes II > III > IV whereas the antibody to the liver enzyme gave the reverse inhibitory pattern, e.g., isozyme IV > III > II.In vitro dissociation-reassociation of mixtures of isozyme I and V led to the formation of the other three isozymes. Similar experiments performed individually with either egg isozyme III or IV resulted in the production of predominantly isozymes III, II, and I due to the instability of isozyme V during the hybridization procedure.The above results indicate that isozymes I and V are tetramers of the respective parental subunits and that isozymes II, III, and IV are hybrid molecules with subunit assignments of (I3V1), I2V2), and (I1V3), respectively.  相似文献   

19.
The soluble creatine kinase isozymes CK-II, CK-III, and CK-IV fromXenopus laevis have been purified to apparent homogeneity and their subunits characterized by means of molecular weight, peptide pattern, and dissociation-reassociation experiments. CK-III and CK-IV are homodimeric isozymes whose subunits are distinct in both molecular weight (42,000 and 41,000, respectively) andStaphylococcus aureus V8 peptide pattern. In dissociation-reassociation experiments, those two subunits do form active heterodimeric isozymes with one another or with rabbit M-CK subunits. Hybrid CK-III/IV isozymes occur also during embryonic differentiation and in adult heart muscle, whereas most other adult tissues contain only homodimeric CK-III or CK-IV isozymes. The CK-II isozyme is a heterodimer composed of one CK-III subunit and another subunit specific to CK-II (M r =41,000). Neitherin vivo norin vitro does this subunit seem able to form homodimers or heterodimers with CK-IV and rabbit M-CK subunits. If we take into account the apparent association of CK-I isozyme with cellular organelles, these results corroborate earlier statements and suggest that the CK isozyme system ofX. laevis is encoded by at least four differentially regulated genomic loci.  相似文献   

20.
Chicken brain enolase was found to show multiple forms (I, II and III) separable by DEAE-cellulose column chromatography, whereas enolase from chicken skeletal muscle showed a single form. Brain enolase I, enolase III and muscle enolase were purified to electrophoretic homogeneity. These three isozymes were dimeric enzymes, each being composed of two identical subunits, alpha, gamma and beta, having molecular weight of 51,000 +/- 600, 52,000 +/- 550 and 51,500 +/- 650, respectively, as determined by SDS-polyacrylamide gel electrophoresis analysis. Brain enolases I, II and III and muscle enolase had similar catalytic parameters, including almost the same Km values and pH optima. Specific antibodies against brain enolase I, enolase III and muscle enolase, raised in rabbit, showed no cross-reactivity with each other. Antibodies for brain enolases I and III also reacted with brain enolase II, indicating that brain enolase II was the hybrid form (alpha gamma) of brain enolases I (alpha alpha) and III (gamma gamma). Enolases from chicken liver, kidney and heart reacted with the antisera for brain enolase I, but not with those for brain enolase III or muscle enolase. Developmental changes in enolase isozyme distribution were observed in chicken brain and skeletal muscle. In brain, the alpha gamma and gamma gamma forms were not detected in the early embryonic stage and increased gradually during the development of the brain, whereas the alpha alpha form existed at an almost constant level during development. In skeletal muscle, complete switching from alpha alpha enolase to beta beta was observed during the period around hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号