共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemiluminescence associated with peroxidation of luminol in buffered aqueous solution is a complex process involving several intermediates. It can be inhibited by removal of oxygen from the incubation medium. Superoxide radical is both an intermediate in this reaction and an essential component in light-producing steps. The importance of O2? in propagating this reaction was shown by the inhibition of luminescence by superoxide dismutase. A mechanism was proposed which is consistent with the data. It appears likely that the diverse biological effects of peroxidases are largely due to the reactivities of these intermediates and products. 相似文献
2.
Addition of nifurtimox (a nitrofuran derivative used for the treatment of Chagas' disease) to rat liver microsomes produced an increase of (a) electron flow from NADPH to molecular oxygen, (b) generation of both superoxide anion radical (O2?) and hydrogen peroxide, and (c) lipid peroxidation. The nifurtimox-stimulated NADPH oxidation was greatly inhibited by NADP+ and p-chloromercuribenzoate, and to a lesser extent by SKF-525-A and metyrapone. These inhibitions reveal the function of both the NADPH-cytochrome P-450 (c) reductase and cytochrome P-450 in nifurtimox reduction. Superoxide dismutase, catalase (in the presence of superoxide dismutase), and hydroxyl radical scavengers (mannitol, 5,5-dimethyl-1-pyrroline-1-oxide) inhibited the nifurtimox-stimulated NADPH oxidation, in accordance with the additional operation of a reaction chain including the hydroxyl radical. Further evidence supporting the role of superoxide anion and hydroxyl radicals in the nifurtimox-induced NADPH oxidation resulted from the effect of specific inhibitors on NADPH oxidation by O2? (generated by the xanthine oxidase reaction) and by OH. (generated by an iron chelate or the Fenton reaction). Production of O2? by rat kidney, testes and brain microsomes was significantly stimulated by nifurtimox in the presence of NADPH. It is postulated that enhanced formation of free radicals is the basis for nifurtimox toxicity in mammals, in good agreement with the postulated mechanism of the trypanocide effect of nifurtimox on Trypanosoma cruzi. 相似文献
3.
N Okamura S Ohashi N Nagahisa S Ishibashi 《Archives of biochemistry and biophysics》1984,228(1):270-277
Phosphorylation of proteins was examined in guinea pig polymorphonuclear leukocytes in relation to the effects of membrane-perturbing agents, which stimulate superoxide anion production, and their inhibitors. The phosphorylation was detected by 32P autoradiography after separation by two-dimensional electrophoresis of proteins phosphorylated in 32P-preloaded cells. Though phosphorylation of various proteins was stimulated by each of the membrane-perturbing agents, the stimulation was especially marked in six proteins. Phorbol myristate acetate and digitonin enhanced the phosphorylation of the six proteins, while myristate and concanavalin A increased the phosphorylation of five and three proteins, respectively, out of the six proteins. p-Bromophenacyl bromide, an inhibitor of phospholipase A2, inhibited the stimulatory effect of phorbol myristate acetate on both superoxide anion production and protein phosphorylation. Trifluoperazine, a calmodulin inhibitor, also inhibited the effect of phorbol myristate acetate on both, except for an increase in the phosphorylation of one out of the six proteins. alpha-Methylmannoside, an inhibitor of concanavalin A binding, inhibited the stimulation of the phosphorylation of the three proteins by concanavalin A. The results indicate that the activation of superoxide anion production by the membrane-perturbing agents in guinea pig polymorphonuclear leukocytes is accompanied by the phosphorylation of, at least some of, these six proteins. 相似文献
4.
An attempt to estimate the importance of general acid-base catalysis in enzymic catalysis has been made, using the hydrolysis of the ester group of N,O-diacetylserinamide as a model for the deacylation of acyl-chymotrypsins. General base catalysis of this reaction by imidazole is estimated to reduce the activation energy by at least 31 kJ mol?1. The rate of reaction, however, is not greatly enhanced because of an unfavourable change in the entropy of activation from ?132 to ?197 JK?1 mol?1. At about 300 K, a typical temperature for enzyme-catalysed reactions, the reduction in activation energy would cause a rate enhancement of about 3 × 105-fold if the unfavourable entropy change did not occur. For specific acyl-chymotrypsins the entropy of activation for deacylation is about ?89 J K?1 mol?1, allowing the full effect of general base catalysis by imidazole to be realized. It is, therefore, postulated that in the active site of an enzyme, a properly oriented imidazole side chain may catalyse the rate of a reaction 105-fold by general base catalysis. 相似文献
5.
Vanadate or molybdate strongly accelerate the cooxidation of NADH, or of reduced nicotinamide mononucleotide, by the xanthine oxidase plus xanthine reaction. Superoxide dismutase eliminated the effect of vanadate or molybdate, while catalase was without effect. It follows that vanadate or molybdate accelerate the oxidation of dihydropyridines by O-2. A stoichiometry of 4 NADH oxidized per O-2 introduced suggests a chain reaction for which a mechanism is proposed. These results provide an explanation for the reported stimulation, by vanadate, of NADH oxidation by biological membranes. 相似文献
6.
On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium 总被引:3,自引:0,他引:3
In aerobic reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium, O2- production is mediated by the tetrazolium, not the phenazine. Thus, superoxide dismutase inhibited reduction of the tetrazolium, but when ferricytochrome c was substituted for the tetrazolium its reduction was not affected by this enzyme. Furthermore, NADH plus the phenazine did not accelerate the oxidation of epinephrine to adrenochrome unless the tetrazolium was present, and under those circumstances superoxide dismutase did inhibit adrenochrome formation. When the tetrazolium and ferricytochrome c were present simultaneously, addition of superoxide dismutase was seen to accelerate the reduction of the cytochrome. This is explainable by the reduction of O2- by the reduced phenazine, which thus competes with cytochrome c for the available O2-. When the O2- was eliminated by superoxide dismutase, more of the reduced phenazine was available for the direct reduction of cytochrome c. 相似文献
7.
8.
The scavenging of superoxide radical by manganous complexes: in vitro 总被引:22,自引:0,他引:22
Dialyzable manganese has been shown to be present in millimolar concentrations within cells of Lactobacillus plantarum and related lactic acid bacteria. This unusual accumulation of Mn appears to serve the same function as Superoxide dismutase (SOD), conferring hyperbaric oxygen and Superoxide tolerance on these SOD-free organisms. The form of the Mn in the lactic acid bacteria and the mechanisms whereby it protects the cell from oxygen damage are unknown. This report examines the mechanisms by which Mn catalytically scavenges O2?, both in the xanthine oxidase/cytochrome c SOD assay and in a number of in vitro systems relevant to the in vivo situation. In all the reaction mixtures examined, Mn(II) is first oxidized by O2? to Mn(III), and H2O2 is formed. In pyrophosphate buffer the Mn(III) thus formed is re-reduced to Mn(II) by a second O2?, making the reaction a true metal-catalyzed dismutation like that catalyzed by SOD. Alternatively, if the reaction takes place in orthophosphate or a number of other buffers, the Mn(III) is preferentially reduced largely by reductants other than O2?, such as thiols, urate, hydroquinone, or H2O2. H2O2, a common product of the lactic acid bacteria, reacted rapidly with Mn(III) to form O2, apparently without intermediate O2 release. Free hexaquo Mn(II) ions were shown by electron spin resonance spectroscopy and activity assays in noncomplexing buffers to be poorly reactive with O2?. In contrast, Mn(II) formed complexes having a high catalytic activity in scavenging O2? with a number of organic acids, including malate, pyruvate, propionate, succinate, and lactate, with the Mn-lactate complex showing the greatest activity. 相似文献
9.
It has been demonstrated previously (P.C. Andrews and N.I. Krinsky (1981) J. Biol. Chem. 256, 4211-4218) that human leukocyte myeloperoxidase, an alpha 2 beta 2 enzyme, can be cleaved by mild reduction and alkylation to an alpha 1 beta 1 structure that we have termed hemi-myeloperoxidase. The native enzyme and hemi-myeloperoxidase have the same specific activity in a Cl--independent peroxidase assay and identical visible spectra under either oxidized or reduced conditions. This paper compares other properties of native and hemi-myeloperoxidase. Both enzymes are inhibited by high concentrations of H2O2 in an identical fashion. Both enzymes showed identical regulation by pH and Cl-. The utilization of Cl-, as assayed by chlorination of diethanolamine, was moderately decreased in hemi-myeloperoxidase. This reduction in chlorination was not reflected in a bactericidal assay, where again, hemi-myeloperoxidase was identical in activity to native myeloperoxidase. 相似文献
10.
Kinetic analysis of superoxide anion production by activated and resident murine peritoneal macrophages 总被引:2,自引:0,他引:2
Using a continuous spectrophotometric assay, we have monitored the formation of superoxide anion (O2?) by activated and resident murine peritoneal macrophages. Macrophages elicited by injection with Corynebacterium parvum, as well as resident macrophages from untreated mice, were kept in suspension culture overnight to eliminate short-lived, contaminating neutrophils. Cytochemical analysis of the cultured macrophages disclosed that essentially all of the activated macrophages reduced nitroblue tetrazolium (NBT) dye vigorously. In contrast, only 18% of the resident macrophages demonstrated vigorous NBT reduction; the remainder of the resident macrophages reduced NBT very weakly. Kinetic analysis of macrophage O2? formation revealed that activated macrophages exposed to phorbol myristate acetate (PMA) produced O2? at a 13-fold greater maximum rate than resident macrophages. The decline in the rate of O2? production with time by activated macrophages was also greater than that of resident macrophages. The data indicate that the greater O2? production by activated macrophage populations is due to (i) the presence of an increased percentage of macrophages that respond to PMA with vigorous O2? production, and (ii) an increased maximum rate of O2? formation by these macrophages. 相似文献
11.
Increased chemiluminescence and superoxide production in the liver of chronically ethanol-treated rats 总被引:4,自引:0,他引:4
A Boveris C G Fraga A I Varsavsky O R Koch 《Archives of biochemistry and biophysics》1983,227(2):534-541
Rats fed ethanol (1.74 +/- 0.12 g/day/100 g body wt for 12 weeks) showed a 45% increased microsomal production of O-2 (2.23 +/- 0.14 nmol/min/mg protein) and a 28% increased content of endoplasmic reticulum protein (26.8 +/- 1.4 mg/g liver). This could lead, at substrate saturation, to a 86% increased cytosolic production of O-2 which is not compensated by cytosolic superoxide dismutase levels that remain normal. It is claimed that this unbalance between O-2 production and superoxide dismutase leads to a peroxidative stress in agreement with the 54% increased spontaneous liver chemiluminescence (37 +/- 2 cps/cm2) measured in the ethanol-treated rats. Hydroperoxide-induced chemiluminescence was 57, 43, and 28% higher, respectively, in homogenates, mitochondria, and microsomes isolated from ethanol-treated rats as compared with controls. Vitamins E and A were more effective inhibitors of the hydroperoxide-stimulated chemiluminescence in the liver homogenates from ethanol-treated rats as compared with the effect on the homogenates from control animals. The results are consistent with a peroxidative stress in chronic alcoholism leading to increased lipoperoxidation and decreased levels of antioxidants. 相似文献
12.
J B Hunt P Z Smyrniotis A Ginsburg E R Stadtman 《Archives of biochemistry and biophysics》1975,166(1):102-124
The requirement for metal ions by glutamine synthetase of Escherichia coli in catalyzing the γ-glutamyl transfer reaction has been investigated. In order of decreasing V at pH 7.0, Cd2+, Mn2+, Mg2+, Ca2+, Co2+, or Zn2+ will support the activity of the unadenylylated enzyme in the presence of ADP. With AMP substituted for ADP to satisfy the nucleotide requirement, only Mn2+ or Cd2+ will support the activity of the unadenylylated enzyme. Kinetic and equilibrium binding measurements show a 1:1 interaction between the nonconsumable substrate ADP and each enzyme subunit of the dodecamer. (To obtain this result, each enzyme subunit must be active in catalyzing γ-glutamyl transfer.) The stability constant of the unadenylylated subunit for ADP-Mn is 3.5 × 105m?1, or ~2.86 × 107m?1 under assay conditions, with arsenate, Mn2+, and glutamine being responsible for this large affinity increase. Saturation of two Mn2+ ion-binding sites per enzyme subunit is absolutely required for activity expression. While apparently not affecting the affinity of the first Mn2+ bound (K′ = 1.89 × 106 M?1), glutamine increases the stability constant for the second Mn2+ bound from 2 × 104 to 5.9 × 105m?1. Reciprocally, increasing Mn2+ concentrations decreases the apparent Km′ value for glutamine. Glutamine (by producing a net uptake of protons in binding to the enzyme) is responsible for changing the proton release from 3 to about 1 for 2 Mn2+ bound per enzyme subunit, with ~0.5 H+ displaced in both fast and slow processes. The uv spectral change induced by the binding of the first Mn2+ to each enzyme subunit remains unchanged by the presence of glutamine. However, glutamine reduces the half-time of the spectral change or slow proton release from ~30 to ~20 sec at 37 °C. Binding and kinetic results indicate a mechanism involving a random addition of Mn2+ to two subunit sites. Saturation of the high-affinity site with Mn2+ induces a conformational change to an active configuration, while activity expression depends also on the saturation of a second Mn2+ binding site (at or near the catalytic site). Once the first Mn2+ binding site of the subunit is saturated, an active enzyme complex can be formed either by the sequential binding of Mn2+ and ADP at the second site or by the binding of ADP-Mn complex directly to this site if the concentration of ADP-Mn is greater than 10?8m in the assay. Some additional observations on the binding of Mg2+, Ba2+, Ca2+, and Zn2+ to the enzyme are presented. 相似文献
13.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase. 相似文献
14.
Methodology, based on reversed-phase high-performance liquid chromatography, is described for monitoring the reactions of cisplatin with DNA, nucleotides, and methionine. Cisplatin was determined in DNA ultrafiltrates on solvent-generated anion exchangers which were prepared by coating the surface of a reversed-phase column with hexadecyltrimethylammonium bromide. These systems were also applicable to studies on the reactions of cisplatin with nucleotides. The retention of the nucleotides studied (5'-AMP, 5'-GMP, 5'-CMP, and 5'-TMP) was described by means of an ion-exchange model and was manipulated by controlling the phosphate concentration in the mobile phase and its pH. The results indicate that cisplatin interacts predominantly with adenosine and guanosine groups on the DNA molecule and that binding is limited by the rate of conversion to an aquated intermediate. Whereas reversed-phase HPLC systems employing cationic pairing ions were applicable to the analysis of mixtures containing cisplatin and anionic solutes, systems employing alkyl sulfonates were required to monitor the reaction of cisplatin with methionine which produces cationic products. Retention, in this latter system, was optimized by the addition of acetonitrile to the mobile phase and by controlling the concentration and chain length of alkylsulfonate in the mobile phase. Although an octadecylsilylsilica, reversed-phase column was preferred for the analytical separation of the methionine-platinum complexes, a polystyrene-divinylbenzene colume was preferred for preparative work. 相似文献
15.
The permeability of phospholipid membranes to the superoxide anion (O2?) was determined using soybean phospholipid vesicles containing FMN in the internal space. The efflux of O2? generated by the illumination of FMN was so slow that more than 90% of the radicals were spontaneously disproportionated within the vesicles before they could react with cytochrome c at the membrane exterior. The amount of diffused O2? was proportional to the intravesicular concentration of O2? over a range from 1 to 10 μm which was deduced from its disproportionation rate. The permeability coefficient of the phospholipid bilayer for O2? was estimated to be 2.1 × 10?6 cm s?1 at pH 7.3 and 25 ° C. Superoxide dismutase trapped inside vesicles was not reactive with extravesicular O2? unless Triton X-100 was added. O2? generated outside spinach chloroplast thylakoids did not interact with superoxide dismutase or cytochrome c which had been enclosed in the thylakoids. Thus, chloroplast thylakoids also showed little permeability to O2?. 相似文献
16.
17.
Metabolic flux through the purine salvage pathway appears to modulate superoxide secretion by elicited macrophages. Exogenous adenosine, the first substrate of this pathway, stimulates superoxide secretion, and Allopurinol, a specific inhibitor of xanthine oxidase, inhibits superoxide secretion. The effects of these agents are additive since it was possible for each to neutralize the effects of the other when given in combination. In these experiments, the purine salvage pathway was responsible for over ten times the superoxide production attributable to the NADPH oxidase system. 相似文献
18.
Arachidonic acid (C20:4) and other unsaturated fatty acids are shown to activate superoxide (O2?) production in a cell-free system represented by sonically disrupted guinea pig peritoneal macrophages. The reaction requires a heat-sensitive cellular component and NADPH, is enhanced by flavin adenine dinucleotide (FAD), and is not linked to enzymatic oxidation of the fatty acid. C20:4-elicited O2? formation is dependent on the cooperation between a subcellular component sedimentable at 48,000g (probably containing the O2?-forming enzyme) and a cytosolic factor. This appears to be the first report of O2? generation being elicited in a cell-free system derived from unstimulated cells and supports the idea that unesterified unsaturated fatty acids act as second messengers of O2? formation in intact phagocytes. 相似文献
19.
Sofia G. Ljutakova Elevter M. Russanov Stefan I. Liochev 《Archives of biochemistry and biophysics》1984,235(2):636-643
Superoxide dismutase (SOD) activity in rat liver cytosol and submitochondrial fractions was characterized as enzymatic and nonenzymatic (due to the SOD-like activity of copper) by four approaches: (i) aerobic NBT2+ (nitroblue tetrazolium) photoreduction in the absence of EDTA; (ii) aerobic NBT2+ photoreduction in the presence of 10?4m EDTA; (iii) anaerobic NBT2+ photoreduction; and (iv) o-dianisidine photooxidation. Under normal conditions nonenzymatic SOD activity has been observed only in the intermembrane space. The single subcutaneous injection of rats with CuSO4 solution (5 mg Cu/kg body wt) led to (i) an elevation of the copper level in all submitochondrial fractions; (ii) an increase in enzymatic SOD activity in only cytosol and intermembrane spaces; (iii) the appearance of a new electrophoretic SOD activity band in the intermembrane space preparations; and (iv) the appearance of nonenzymatic SOD-like activity in the outer and inner mitochondrial membranes, and a twofold increase in lipid hydroperoxides. This suggests that the increased nonenzymatic copper in vivo has a prooxidant effect, and does not catalyze the dismutation of O2? as it has been shown in in vitro experiments [E. M. Russanov S. G. Ljutakova, and S. I. Leutcher (1982) Arch. Biochem. Biophys.215, 220–229]. The peculiarities of the SOD activity in the intermembrane space are explained by the lysosomal localization of the granular CuZnSOD. 相似文献
20.
The capacity of liver soluble fraction to stimulate hepatic microsomal conversion of squalene to cholesterol is lost on treatment with trypsin. Heat treatment of the soluble fraction results in a selective loss of its capacity to stimulate conversion of squalene to cholesterol; the ability to stimulate conversion of lanosterol and desmosterol to cholesterol is however retained. It is proposed that the liver soluble fraction contains at least two noncatalytic proteins, one heat-labile and the other heat-stable, which participate in microsomal cholesterol synthesis. The heat-labile protein mediates the conversion of squalene to lanosterol while the heat-stable protein is needed for the conversion of lanosterol and other sterol precursors to cholesterol. 相似文献