首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the site of action of imipramine, the subcellular distribution of [3H]imipramine in rodents was followed after both in vivo administration and in vitro incubation with tissue slices under "physiological" conditions. Total [3H]imipramine (10-1,000 nM) binding was associated with all primary fractions, but in particular with the nuclear (P1) and mitochondrial (P2) pellets and the synaptosomal (P2B) and myelin (P2A) fractions. Using an excess of imipramine to define any nonspecific interactions, a specific association was observed mainly in those fractions containing isolated nerve terminals and to a lesser extent with the purified myelin fraction. Preparation of subsynaptosomal fractions by osmotic lysis indicated that [3H]imipramine was associated with the synaptic vesicle and microsomal fractions and also with synaptosomal membranes. The degree of binding to the vesicular and microsomal fractions was increased with the length of preparation time, whereas there was an inverse relationship between the length of preparation and the amount bound to the synaptosomal membrane fraction. There was no evidence of an intrasynaptosomal accumulation of [3H]imipramine at concentrations up to 1,000 nM. [3H]2-Nitroimipramine, a slowly dissociating imipramine derivative, was exclusively located in synaptic membrane fractions. Prior treatment of rats with a combination of 5,7-dihydroxytryptamine and desipramine reduced 5-hydroxytryptamine levels and the levels of [3H]imipramine associated with the synaptosomal fractions to the same extent. It is concluded that imipramine is associated with a binding site localised on 5-hydroxytryptaminergic nerve terminals and that there is a redistribution to other sites (vesicular and microsomal) during the isolation procedure.  相似文献   

2.
Forebrains from day-old chicks were homogenized and fractionated by differential sedimentation and density gradient centrifugation to yield subcellular fractions. The synaptosomal plasma membrane fraction was further treated with Triton X-100 to yield subsynaptic membrane fractions including synaptic junctions. Glycoproteins from these subsynaptic membrane fractions were identified after separation by SDS-polyacrylamide gel electrophoresis by incubating the gel slabs with radioiodinated concanavalin A. Two lectin-binding proteins were discerned in the synaptic junction fraction while none were observed in the Triton-soluble portion of the synaptic plasma membrane. The carbohydrate content of the glycoproteins from each subcellular fraction was quantitated after methanolysis and derivatization aso-methyl-trifluoroacetyl analogs by gas-liquid chromatography. The lowest concentration of glycoprotein sugars was found in the synaptic junction, mitochondrial, and soluble fractions while the greatest concentration was found in the myelin, light-synaptic plasma membrane, and the Triton-soluble portion of the synaptic plasma membrane. Of the subcellular fractions, the synaptic junction contained the highest porportion of mannose and lowest proportion of sialic acid. Moreover, this fraction's content of galactose andN-acetylglucosamine, relative to mannose was the lowest while its content of fucose was low. The oligosaccharide chains extending into the synaptic cleft therefore are predominantly of the neutral, mannose-rich type and are attached to a limited number of high-molecular-weight glycoproteins.  相似文献   

3.
Subcellular fractions from cultured C-6 glioma cells prepared by methods similar to those for crude synaptosomal fractions of rat cerebral cortex accumulated [35S]taurine as did intact glioma cells. Thus, the accumulation of taurine was dependent on temperature and sodium concentration and sensitive to osmotic shock. The kinetic properties of this uptake are characterized by an apparent Km, of about 25 μm, The properties of taurine uptake into subcellular fractions from C-6 glioma cells were compared with those of crude synaptosomal fractions and differences could be observed in temperature sensitivity and with metabolic inhibitors, which were less potent in the glioma preparation. Equilibrium density gradient centrifugation of subcellular fractions from glioma cells revealed that particles containing [35S]taurine sediment to a lower buoyant density than mitochondria. But on co-sedimentation of subcellular fractions from glioma cells with synaptosomal fractions derived from cerebral cortex, differences in the buoyant density between these two preparations could be found. The findings support the possibility of a contamination of synaptosomal fractions with subcellular fractions derived from glial origin.  相似文献   

4.
1. Of three sets of Djungarian dwarf hamster, two groups were raised during winter under greatly differing circumstances. One winter group was raised within a climate controlled cage in which the ambient temperature was maintained at 22 degrees C and whereby conditions of light vs darkness were maintained in a constant 12 hr cycle. The second winter group was raised out of doors whereby the hamsters were subjected to prevailing seasonal environmental conditions. A third group was studied under summer conditions, as well. Ca(2+)-, Mg(2+)- and (Ca2+/Mg2+)-ATPase activity was analysed in cellular (= total homogenate) and subcellular fractions (P1-, synaptosomal fraction, synaptic membranes) from cortex, cerebellum and basal brain. 2. The data obtained indicate similar ATPase activity in the cortical homogenates of the winter indoor and summer hamsters. 3. Winter outdoor animals experiencing normal torpidity, however, exhibited reduced ATPase activity by about 50%. 4. Cortical subcellular fractions yielded different results: both the winter and the summer groups showed high ATPase activity in the synaptosomal and synaptic membrane fractions. 5. In the total cerebellar homogenate, the hamsters raised under summer and winter conditions showed the greatest enzyme activity, although less activity was seen in the subcellular fractions. 6. The ATPase activity in the basal brain was found to be nearly identical in all three hamster groups.  相似文献   

5.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

6.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

7.
The subcellular distribution of pyridoxal phosphate (PLP) was studied in mouse brain, as well as the effect of pyridoxal phosphate-γ-glutamyl hydrazone (PLPGH—a convulsant drug which decreases both PLP levels and glutamate decarboxylase activity [GAD] in whole brain) upon both the PLP concentration and the GAD activity in subcellular fractions. An electron microscopic evaluation of the subcellular particles of control and PLPGH-treated animals was also carried out. The main findings were the following: (1) PLP was localized mainly in the supernatant and crude mitochondrial fractions; two-thirds of the amount present in the latter were located in the subfraction containing pure mitochondria, and the remainder was in the synaptosomal fraction. After osmotic disruption of synaptosomes, PLP was found in both the intrasynaptosomal mitochondria and the synaptoplasm. (2) Treatment of mice with PLPGH decreased levels of PLP in several brain fractions, this effect being much more notable in the soluble fractions than in the particulate fractions. After osmotic disruption of the synaptosomes, a specific decrease of PLP in the synaptoplasm was observed. (3) Treatment with PLPGH produced also an inhibition of GAD activity in most of the fractions studied, when this enzyme was assayed in the absence of PLP. In general, the inhibition was greater in those fractions in which levels of PLP were also affected. In synaptosomes, this correlation between the decreased levels of PLP and decreased activity of GAD occurred only in the synaptoplasm. (4) The activation of GAD by PLP added to incubation mixtures was much greater in those fractions from PLPGH-treated animals which displayed extensive inhibition of GAD, in comparison to the corresponding fractions from control animals. (5) No ultrastructural changes were detected in the subcellular fractions from treated animals. Our results show that the decreases of both the levels of PLP and the activity of GAD (as previously found in whole brain) actually occur in the synaptosomes, a finding that supports the hypothesis that the role of PLP in the mechanisms controlling excitability can be explained, at least in part, by its regulatory action on GAD activity, which in turn determines the rate of GABA synthesis at the nerve endings.  相似文献   

8.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

9.
Abstract— The subcellular distribution of histidine decarboxylase (assayed by two different isotopic methods) and several biochemical markers (lactate dehydrogenase, DOPA decarboxylase and protein) was determined in rat cerebral cortex. After differential centrifugation, the enzyme activity was found mainly in the crude mitochondrial and soluble fractions. Further separation of the former on discontinuous sucrose gradients showed that the particulate histidine decarboxylase (HD) was found in the synaptosomal fraction. After osmotic shock, HD activity appeared in the supernatant fraction suggesting that a major portion of the enzyme is localized in the cytoplasm of cortical nerve endings. By analogy with other brain amines, this finding, together with the presence of histamine in synaptic vesicles (K ataoka and de R obertis , 1967), can be taken as further support for the hypothesis of a role as neurotransmitter for histamine.
Various brain regions were homogenized under conditions leading to synaptosome formation. The distribution of HD between 'particulate' and soluble fractions differed from one region to the other, but did not give any clear-cut indication of regions rich in cell bodies or nerve terminals.  相似文献   

10.
The binding of the opiate antagonist 3H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the "sodium effect" of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites.  相似文献   

11.
—The present paper reports the result of studies undertaken to determine the effects of the in vivo administration of Δ9-THC on the ganglioside and sialoglycoprotein contents of rat brain subcellular fractions. Results indicate that the administration of the drug under both acute and chronic conditions brings about characteristic changes in the sialoglycoproteins and ganglioside content in all the subcellular fractions. Both sialoglycoproteins and ganglioside contents were markedly increased in microsomal and synaptosomal fractions and decreased in the mitochondrial fractions although the increase in the synaptosomal fractions has been found to be most striking. After chronic treatment, both ganglioside and sialoglycoprotein content did not change substantially in all the fractions except for a small increase in case of synaptosomal fractions.  相似文献   

12.
Abstract: Age-related changes of the ceramide composition of gangliosides were studied in the synaptosomal and myelin fractions from rat brain, carrying plasma membranes of neuronal and glial origin, respectively. The five major gangliosides (GM1, GD1 a, GD1 b, GT1 b, and GQ1 b) present in these fractions were separated and quantitated by normal-phase HPLC. Each ganglioside was then fractionated by reverse-phase HPLC into the molecular species carrying a single long-chain base (LCB). The largely preponderant LCBs in the synaptosomal and myelin fractions were the C18:1 and C20:1. The content of C20.1 LCB, generally low at 1 month, increased with age in all analyzed gangliosides and in all subcellular fractions and was greater in the "b series" than in the "a series" gangliosides. Remarkably, GM1 was the only ganglioside where the proportion of LCB 20:1 was higher in the synaptosomal fraction than in the myelin fraction. The fatty acid composition of the C18:1 or C20:1 LCB species of the different gangliosides in the synaptosomal and myelin fractions did not undergo appreciable changes with age. Stearic acid was largely predominant in all the gangliosides of the synaptosomal fraction, more in the C18:1 than in the C20:1 LCB species (80–90% vs. 60–70%). The gangliosides of the myelin fraction were characterized by a lower content of 18:0 and a much higher content of 16:0 and 18:1 fatty acids than those of the synaptosomal fraction. Thus, the ceramide composition is different in the gangliosides of neuronal and myelin origin and appears to be subjected to an age-related control.  相似文献   

13.
Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain.  相似文献   

14.
ATP-dependent Ca2+ uptake was investigated at low Ca2+ concentrations (10 microM) in rat retinal synaptosomal and mitochondrial preparations obtained by differential centrifugation on Ficoll gradients. Ca2+ uptake in the synaptosomal and mitochondrial subcellular preparations was stimulated by ATP and additionally stimulated by ATP plus taurine. The ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptakes were inhibited by mitochondrial metabolic inhibitors (atractyloside, oligomycin, and ruthenium red). These metabolic inhibitors had a greater effect on the ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptake activities in the mitochondrial preparation than in the synaptosomal preparation. ATP-dependent Ca2+ uptake in a synaptosomal subfraction obtained by osmotic shock was only partially inhibited by atractyloside. ATP-dependent Ca2+ uptake in the synaptosomal subfraction was also stimulated by taurine but to a lesser extent than in either the synaptosomal or mitochondrial preparation. These studies suggest that mitochondria are primarily responsible for taurine-stimulated ATP-dependent Ca2+ uptake in synaptosomal preparations.  相似文献   

15.
Goldfish CNS was fractionated by differential and density gradient centrifugation. The fractions obtained were characterized by marker enzymes typical of various subcellular organelles. They were further analyzed by radioimmunoassay for their contents of ependymins, two CNS glycoproteins known to participate in biochemical reactions after learning events. Ependymins were shown to be major constituents of the soluble cytoplasm (5.6% of the total protein content). The nuclear fraction was virtually devoid of ependymins (0.6% of protein). Small amounts were observed in the crude synaptosomal and microsomal fractions (1.0 and 3.5%, respectively). The highest steady-state concentration of ependymins, however, was measured in the brain extracellular fluid (15.6% of the protein), including the CSF. The specificity of the distribution was examined by intracerebroventricular injection of 125I-labeled ependymins as exogenous marker substances. No indication of an artificial redistribution of the radiolabel during homogenization and fractionation was obtained. The exogenous analogues of ependymins were, however, incorporated in vivo into organelles recovered in the nuclear and crude synaptosomal fractions. Our results suggest that ependymins may interact with synaptic membranes from the extracellular fluid, although so far no evidence for a specific receptor-type binding site could be obtained in vitro.  相似文献   

16.
Naltrexone was administered to rats for 7 days by osmotic minipump (5 mg/kg/day) and thereupon, forebrain mu opioid receptor levels in subcellular fractions were monitored by homologous displacement of [3H]D-ala2-mePhe4-gly-ol5 enkephalin binding. Microsomes displayed increases in mu receptor concentrations that were twofold greater than those associated with synaptic plasma membrane fractions (92 vs. 51%). Levels in crude membranes rose 77%. Binding affinities were unchanged.  相似文献   

17.
The influence of 150 nM exogenously-added gangliosides (GM1, GD1a, GMix) on a Ca2+-activated, Mg2+-dependent ATPase was investigated in cellular and subcellular fractions (P1-fraction, synaptosomal fraction, synaptic membranes) from whole brain, cortex, cerebellum and brain stem of the djungarian dwarf hamster (Phodopus sungorus). Gangliosides are effective at this concentration in stimulating the enzyme activity in all fractions from whole brain. Inhomogenous results (stimulation, inhibition and no effects), however, were obtained in the different individual brain regions.  相似文献   

18.
The ability of chronic ethanol treatment to alter CNS membrane lipids was tested. Adult male C57/BL6 mice were given a liquid diet containing ethanol for eight days. This regimen produced strong physical dependence as judged by withdrawal seizures, tremors and concomitant hypothermia. Analyses were performed on cholesterol, total phospholipid content and total phospholipid acyl composition of myelin, crude (P2), light and heavy synaptosomes as well as synaptosomal plasma membranes. Chronic ethanol treatment had no effect on total phospholipid levels nor phospholipid acyl composition in any of the above subcellular fractions. In ethanol dependent mice, significant increases in cholesterol content and cholesterol/ phospholipid ratios were observed only in synaptosomal plasma membranes.  相似文献   

19.
(1) The characteristics of protein synthesis in microsomal and synaptosomal fractions from rat brain were examined. A high sensitivity to ribonuclease and to cycloheximide, and the need for the presence of pH5 enzymes distinguished protein synthesis in microsomal fractions from protein synthesis in synaptosomes. (2) Under various conditions of incubation synaptosomal fractions prepared in sucrose showed limited protein synthesis compared with synaptosomal fractions prepared by using Ficoll. Such discrepancies could not be attributed to: (i) animal age, (ii) the metabolic state of the synaptosomal fraction, (iii) the absence of bivalent cations in the incubation medium or (iv) the temperature. (3) Protein synthesis in synaptosomal fractions was inhibited 50-65% by cycloheximide, 38-50% by chloramphenicol, 95% by puromycin, 70% by azide and 40% by deoxyglucose; ribonuclease had only a negligible inhibitory effect. (4) As a first approximation to the localization of the protein-synthetic machinery present in the synaptosomal fraction, the distribution of enzymes and radioactivity in subfractions of prelabelled synaptosomes was determined after osmotic shock with water. Approximately 60% of the total protein synthesis in the synaptosomal fraction occurred in the intraterminal mitochondria. (5) Protein synthesis in the intraterminal mitochondria did not show any fundamental difference from synthesis in somatic mitochondria, with respect to inhibition by cycloheximide and chloramphenicol. (6) It was concluded that if extramitochondrial protein synthesis occurs in synaptosomes, it must be very low.  相似文献   

20.
Discontinuous Ficoll-sucrose gradients were used to prepare subcellular fractions from mouse cerebral cortex at various stages of postnatal development. Representative samples of each subcellular fraction were obtained by sedimentation in an analytical ultracentrifuge and each fraction was examined quantitatively and qualitatively by electron microscopy. The amount of synaptosomal material was determined for each fraction on the basis of volume percentage, obtained from a series of contiguous micrographs, to circumvent any sampling error. This allowed an accurate appraisal of synaptosomal distribution during neural development and a direct comparison of the Ficoll-sucrose gradient fractions to the original crude mitochondrial preparations. The distribution of synaptosomal material was shown to be quantitatively altered during neural development, and maturation-dependent changes, at a qualitative level, were described. In addition, the relationship between neural maturation and the relative proportion and distribution of subcellular particles which contain processes tentatively identified as growth cones were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号