首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
工业微生物中NADH的代谢调控   总被引:3,自引:0,他引:3  
NADH是微生物代谢网络中的一种关键辅因子。调节微生物胞内NADH的形式与浓度是定向改变和优化微生物细胞代谢功能, 实现代谢流最大化、快速化地导向目标代谢产物的重要手段之一。以下在详尽总结了NADH生理功能的基础上, 从生化工程(添加外源电子受体、不同氧化还原态底物及NAD合成前体物, 调节培养环境和氧化还原电势)和代谢工程(过量表达NADH代谢相关酶、缺失NADH竞争途径及引入NADH外源代谢途径)两方面分析、归纳了NADH代谢调控策略, 进而凝练出调控NADH/NAD+比率调节微生物细胞代谢功能研究方面亟待解决的3个科学问题及可能的解决途径。  相似文献   

2.
辅酶NADH/NAD+在细胞内氧化还原反应中起着重要的作用,是细胞生长和能量代谢必不可少的辅因子。调节微生物胞内NADH/NAD+的比率是定向改变微生物代谢,高效获得目标代谢产物的有效手段。嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus)是高温厌氧菌中乙醇产量较高的代表性菌株,本文利用不同氧化还原态的碳源改变T.ethanolicus的胞内NADH/NAD+含量和比例,进而研究了其对细胞生长、代谢产物分布的影响。以不同比例的葡萄糖/甘露醇作为混合碳源发酵,胞内氧化还原水平、细胞的生长特性、代谢产物都发生了不同程度的差异,以葡萄糖作为唯一碳源进行培养时,T.ethanolicus生长良好,乙醇产量为0.79g/L,但胞内NADH/NAD+比值和乙醇/乙酸的比值都比较低,分别为0.47和4.82;随着葡萄糖在混合碳源中比例的下降,NADH/NAD+比值增高,发酵产物中乙醇/乙酸比值也呈现上升的趋势。而以甘露醇作为唯一碳源时,发酵产物中乙醇浓度为0.389g/L,NADH/NAD+比值和乙醇/乙酸的比值分别为1.04和16.0。  相似文献   

3.
细菌nox基因编码合成一种含核黄素的NADH氧化酶,NADH氧化酶可催化双原子氧还原为H2O2或H2O,同时将NADH氧化为NAD+。该反应发生在多种代谢途径中,从而对细菌的氧化应激、菌膜形成、毒力调控及代谢产物生成等生理生化过程产生一系列影响。目前对高等动植物体中的nox基因及其编码的NADH氧化酶已有较深入的研究,但近年来一些研究表明,细菌nox基因的功能及作用通路与动植物体存在较大差异,因此,有必要详细了解细菌中nox基因和NADH氧化酶的具体作用机制及其对细胞产生的影响。综合分析近年来细菌nox基因及NADH氧化酶的研究成果,结合我们的研究,对目前存在的问题和未来的发展进行综述。  相似文献   

4.
过量表达苹果酸脱氢酶对大肠杆菌NZN111产丁二酸的影响   总被引:2,自引:1,他引:1  
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌,厌氧条件下由于辅酶NAD(H) 的不平衡导致其丧失了代谢葡萄糖的能力。构建了苹果酸脱氢酶的重组菌大肠杆菌NZN111/pTrc99a-mdh,在厌氧摇瓶发酵过程中通过0.3 mmol/L的IPTG诱导后重组菌的苹果酸脱氢酶 (Malate dehydrogenase,MDH) 酶活较出发菌株提高了14.8倍,NADH/NAD+的比例从0.64下降到0.26,同时NAD+和NADH浓度分别  相似文献   

5.
转录因子Rex是一种广泛存在于革兰氏阳性菌,能够与NADH或者NAD+直接结合响应胞内NADH/NAD+的氧化还原传感器,与靶基因的结合可调节细胞内的多种生理代谢。NAD(H)是调节细胞能量代谢的必需辅酶,显示微生物细胞内的氧化还原状态。研究发现Rex的调节活性与细胞内NADH/NAD+比率相关。需氧和厌氧菌属中Rex单体和复合物晶体结构的解析揭示了Rex、NADH/NAD+和靶基因间的作用关系及调控机制。通过比较分析了不同菌株中Rex单体和复合物的晶体蛋白结构,并揭示了NADH/NAD+对Rex调控活性的影响,进一步解析了Rex与碳和能量代谢、厌氧代谢、发酵、生物膜等之间的联系,并展望了Rex的研究和应用方向。  相似文献   

6.
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因(ldhA)和丙酮酸-甲酸裂解酶的编码基因(pflB)的发酵生产丁二酸的潜力菌株。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。nadD为催化NAD(H)合成途径中烟酸单核苷酸(NaMN)生成烟酸腺嘌呤二核苷酸(NaAD)的烟酸单核苷酸腺苷酰转移酶(Nicotinic acid mononucleotide adenylyltransferase,NAMNAT)的编码基因,通过过量表达nadD基因能够提高NAD(H)总量与维持合适的NADH/NAD+比例。文中构建了重组菌E.coli NZN111/pTrc99a-nadD,在厌氧摇瓶发酵过程中通过添加终浓度为1.0 mmol/L的IPTG诱导表达,重组菌E.coli NZN111/pTrc99a-nadD中NAD+和NADH的浓度分别比宿主菌E.coli NZN111提高了3.21倍和1.67倍,NAD(H)总量提高了2.63倍,NADH/NAD+从0.64降低为0.41,使重组菌株恢复了厌氧条件下生长和代谢葡萄糖的能力。重组菌与对照菌相比,72 h内可以消耗14.0 g/L的葡萄糖产6.23 g/L的丁二酸,丁二酸产量增加了19倍。  相似文献   

7.
偶发分枝杆菌MF2和MF96生物转化差异的机理研究   总被引:2,自引:0,他引:2  
偶发分枝杆菌(Mycobacterium fortuitum)亲株(MF2)和突变株(MF96)存在生物转化差异,通过静息细胞系统转化研究发现:在反应达到平衡后,亲株中产物大部分以雄甾烯二酮(△4_androstenedione,4AD)的形式存在,而突变株中产物大部分为睾酮(testosterone,TS)。为了研究二者的转化差异,采用无细胞系统转化的手段进行了比较研究,结果表明:在添加足量的NAD+和NADH后,亲株和突变株的转化产物比例基本相同。由此推测:在静息细胞中的转化产物比例不同可能是由于辅酶NAD+与NADH的比例不同引起的。最后通过测定亲株和突变株中辅酶NAD+和NADH的比例证实该推测是正确的。  相似文献   

8.
窦畅  徐晴  宋萍  江凌  李霜 《微生物学报》2011,51(4):468-473
[目的]木质纤维素是世界上储量最丰富、最廉价的可再生生物质资源,以米根霉为研究对象,探讨对木质纤维素中主要单糖成分--木糖和葡萄糖的代谢差异,为木质纤维素的高效利用提供科学依据.[方法]分别以木糖和葡萄糖为碳源,考察米根霉的生物量、细胞大分子组分、胞内还原力(NADH/NAD+)、ATP含量以及有机酸积累的差异.[结果...  相似文献   

9.
为了调查5℃低温处理是否改变家蚕Bombyx mori卵滞育NAD代谢, 本研究利用HPLC和分光光度法测定了经25℃和5℃分别处理的滞育卵中NADH 含量、 NAD+含量、 乳酸脱氢酶(LDH)活性和胞质苹果酸脱氢酶(cMDH)活性。结果表明: 5℃处理的NAD(NADH + NAD+)含量和cMDH活性分别增加了106%和53%, 并且显著高于25℃处理(P< 0.01); 但是两种处理的NADH/NAD+比值和LDH活性没有显著差异(P> 0.05)。据此推测, 5℃低温处理加强了家蚕滞育卵NAD+合成和再生能力。  相似文献   

10.
烟酰胺腺嘌呤二核苷酸(NAD+)及其还原形式NADH是糖酵解和线粒体呼吸作用中重要的辅因子,在能量代谢中发挥重要作用。当线粒体缺乏NAD+细胞因不能持续产生ATP而出现功能异常。以往研究发现酵母与植物的线粒体上均存在NAD+转运体,可以将NAD+转运至线粒体。但哺乳动物线粒体内膜上是否有NAD+转运体,一直存有争议。近来,美国宾夕法尼亚一研究团队首次证明SLC25A51可以在哺乳动物线粒体上发挥NAD+转运蛋白的功能。  相似文献   

11.
K562 erythroleukemic cells cultured at low population density in the absence of serum die within 12-24 hours, unless 0.1 mM glyoxylic acid is added to the culture medium. Earlier events, preceding cell death and occurring within 2 hours culture, are: a) a marked drop of both the NAD+/NADH ratio and the NAD+ concentration, which is prevented by 10mM benzamide, b) an increased biosynthesis of NAD+, leading to extensive depletion of cellular ATP. In the presence of 0.1 mM glyoxylic acid the NAD+/NADH ratio as well as their absolute concentrations remain unchanged, while NAD+ biosynthesis is absent. A NAD+/NADH glycohydrolase activity is present in the cell extract, inhibited by 10 mM benzamide and with a higher affinity for NADH than for NAD+. Preservation of a high NAD+/NADH ratio by glyoxylic acid apparently prevents enzyme activity and the related loss of pyridine nucleotides.  相似文献   

12.
13.
Sun F  Dai C  Xie J  Hu X 《PloS one》2012,7(5):e34525
Cytosolic free NAD/NADH ratio is fundamentally important in maintaining cellular redox homeostasis but current techniques cannot distinguish between protein-bound and free NAD/NADH. Williamson et al reported a method to estimate this ratio by cytosolic lactate/pyruvate (L/P) based on the principle of chemical equilibrium. Numerous studies used L/P ratio to estimate the cytosolic free NAD/NADH ratio by assuming that the conversion in cells was at near-equilibrium but not verifying how near it was. In addition, it seems accepted that cytosolic free NAD/NADH ratio was a dependent variable responding to the change of L/P ratio. In this study, we show (1) that the change of lactate/glucose (percentage of glucose that converts to lactate by cells) and L/P ratio could measure the status of conversion between pyruvate + NADH and lactate + NAD that tends to or gets away from equilibrium; (2) that cytosolic free NAD/NADH could be accurately estimated by L/P only when the conversion is at or very close to equilibrium otherwise a calculation error by one order of magnitude could be introduced; (3) that cytosolic free NAD/NADH is stable and L/P is highly labile, that the highly labile L/P is crucial to maintain the homeostasis of NAD/NADH; (4) that cytosolic free NAD/NADH is dependent on oxygen levels. Our study resolved the key issues regarding accurate estimation of cytosolic free NAD/NADH ratio and the relationship between NAD/NADH and L/P.  相似文献   

14.
The rotenone-insensitive reduction of quinones and aromatic nitrocompounds by mitochondrial NADH: ubiquinone reductase (complex I, EC 1.6.99.3) has been studied. It was found that these reactions proceed via a mixed one- and two-electron transfer. The logarithms of the bimolecular rate constants of oxidation (TN/Km) are proportional to the one-electron-reduction potentials of oxidizers. The reactivities of nitrocompounds are close to those of quinones. Unlike the reduction of ferricyanide, these reactions are not inhibited by NADH. However, they are inhibited by NAD+ and ADP-ribose, which also act as the mixed-type inhibitors for ferricyanide. TN/Km of quinones and nitrocompounds depend on the NAD+/NADH ratio, but not on NAD+ concentration. They are diminished by the limiting factors of 2.5-3.5 at NAD+/NADH greater than 200. It seems that rotenone-insensitive reduction of quinones and nitrocompounds takes place near the NAD+/NADH and ferricyanide binding site, and the inhibition is caused by induced conformational changes after the binding of NAD+ or ADP-ribose.  相似文献   

15.
The behaviour of the nicotinamide adenine dinucleotides NAD+ and NADH in Acinetobacter calcoaceticus during n-alkane assimilation was studied, acetate and succinate being used as reference carbon sources. The intracellular concentration of the two nucleotides was found to increase during the exponential growth phase, reaching its maximum in the phase of decreasing growth rates. In the exponential phase, the NAD+/NADH quotients were less than 1 and showed only unimportant variations. In the phase of decreasing growth rates, the concentration of NADH showed a distinct decrease, reaching its minimum in the stationary phase. Parallel to this, the concentration of NAD+ showed a continuous increase until the stationary phase was reached. This resulted in an increase, during the phase of decreasing growth rates, of the NAD+/NADH quotients to values greater than 1, similarly as recorded in the stationary phase. There were no fundamental differences in this behaviour between the individual carbon sources.  相似文献   

16.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

17.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
The interactions of calcium with NAD+, NADH, NADP+ and NADPH in a 50% (by volume) methanol/water mixture (pH 7, 25 degrees C) were studied by calorimetry. The association constants for 1:1 complex formation were found to be 6.6 +/- 0.2, 270 +/- 76, 18 +/- 3 and 98 +/- 10 for NAD+, NADH, NADP+ and NADPH, respectively. Comparing these to the association constants for an aqueous system reveals that as the polarity of the solvent system is decreased the interactions involving NAD+, NADP+ and NADPH are all decreased. In contrast, the interaction involving NADH is markedly increased. All the interactions were found to be endothermic.  相似文献   

20.
The intracellular level of the NAD+/NADH ratio plays a vital role in sustaining and coordinating the catabolic reaction of the cell, and reflects the redox state of cytosol. Antioxidants play a role to protect cytosol and membrane from free radicals. This role of antioxidants involves sustaining cell viability and the procedure is thought to be regulated by the equilibrium of the redox state of the cell. However, there is very little known about how the NAD+/NADH level is set and changed. To alter the ratio, human NAD-dependent glycerol-3-phosphate dehydrogenase (cGPDH) cDNA was transfected stably in CHO dhfr- cells. When compared to parental CHO cells, cGPDH activities of the transfected cells were increased 8-12 fold, but the NAD+/NADH ratio was decreased. Specific growth rate of the transfected cells was similar to or slight lower than that of wild type CHO cells. Cell viability of the stable transformants against H2O2 was increased without change of either catalase or glutathione peroxidase activity. However, the increase of cell viability was correlated with the decrease of NAD+/NADH ratio in transfectants. From these results, it is suggested that the overexpression of cGPDH changes the NAD+/NADH ratio toward a decrease, and by this change in the redox state the cell confers more resistance against H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号