首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from Xenopus laevis histones and the high-affinity "Widom 601" positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple-turnover conditions was generally decreased compared to that of free 601 DNA, mostly because of anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multiphasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism in which some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP.  相似文献   

2.
Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements. This high-throughput synthesis and screening approach produced two novel uracil-tethered inhibitors of UNG2, the best of which was crystallized with the enzyme. Remarkably, this inhibitor mimics the crucial hydrogen bonding and electrostatic interactions previously observed in UNG2 complexes with damaged uracilated DNA. Thus, the environment of the binding site selects for library ligands that share these DNA features. This is a general approach to rapid discovery of inhibitors of enzymes that recognize extrahelical damaged bases.  相似文献   

3.
4.
In this study, we adapted the well known uracil DNA glycosylase (UNG) carry-over prevention system for PCR, and applied it to the analysis of DNA methylation based on sodium bisulfite conversion. As sodium bisulfite treatment converts unmethylated cytosine bases into uracil residues, bisulfite treated DNA is sensitive to UNG treatment. Therefore, UNG cannot be used for carry-over prevention of PCR using bisulfite treated template DNA, as not only contaminating products of previous PCR, but also the actual template will be degraded. We modified the bisulfite treatment procedure and generated DNA containing sulfonated uracil residues. Surprisingly, and in contrast to uracil, 6-sulfonyl uracil containing DNA (SafeBis DNA) is resistant to UNG. We showed that the new procedure removes up to 10 000 copies of contaminating PCR product in a closed PCR vessel without significant loss of analytical or clinical sensitivity of the DNA methylation analysis.  相似文献   

5.
Krosky DJ  Song F  Stivers JT 《Biochemistry》2005,44(16):5949-5959
Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur. Here we report that UDG kinetically and thermodynamically prefers substrate sites where the uracil is paired with an unnatural adenine analogue that lacks any Watson-Crick hydrogen-bonding groups. The magnitude of the preference is a striking 43000-fold as compared to an adenine analogue that forms three H-bonds. Transient kinetic and fluorescence measurements suggest that preferential recognition of uracil in the context of a series of incrementally destabilized base pairs arises from two distinct effects: weak or absent hydrogen bonding, which thermodynamically assists extrusion, and, most importantly, increased flexibility of the site which facilitates DNA bending during base flipping. A coupled, stepwise reaction coordinate is implicated in which DNA bending precedes base pair rupture and flipping.  相似文献   

6.
Base excision repair of DNA in mammalian cells   总被引:11,自引:0,他引:11  
Base excision repair (BER) of DNA corrects a number of spontaneous and environmentally induced genotoxic or miscoding base lesions in a process initiated by DNA glycosylases. An AP endonuclease cleaves at the 5' side of the abasic site and the repair process is subsequently completed via either short patch repair or long patch repair, which largely require different proteins. As one example, the UNG gene encodes both nuclear (UNG2) and mitochondrial (UNG1) uracil DNA glycosylase and prevents accumulation of uracil in the genome. BER is likely to have a major role in preserving the integrity of DNA during evolution and may prevent cancer.  相似文献   

7.
Parker JB  Stivers JT 《Biochemistry》2011,50(5):612-617
The prodrug 5-fluorouracil (5-FU), after activation into 5-F-dUMP, is an extensively used anticancer agent that inhibits thymidylate synthase and leads to increases in dUTP and 5-F-dUTP levels in cells. One mechanism for 5-FU action involves DNA polymerase mediated incorporation of dUTP and 5-F-dUTP into genomic DNA leading to U/A, 5-FU/A, or 5-FU/G base pairs. These uracil-containing lesions are recognized and excised by several human uracil excision repair glycosylases (hUNG2, hSMUG2, and hTDG) leading to toxic abasic sites in DNA that may precipitate cell death. Each of these enzymes uses an extrahelical base recognition mechanism, and previous studies with UNG have shown that extrahelical recognition is facilitated by destabilized base pairs possessing kinetically enhanced base pair opening rates. Thus, the dynamic properties of base pairs containing 5-FU and U are an important unknown in understanding the role of these enzymes in damage recognition and prodrug activation. The pH dependence of the (19)F NMR chemical shift of 5-FU imbedded in a model trinucleotide was used to obtain a pK(a) = 8.1 for its imino proton (10 °C). This is about 1.5 units lower than the imino protons of uracil or thymine and indicates that at neutral pH 5-FU exists significantly as an ionized tautomer that can mispair with guanine during DNA replication. NMR imino proton exchange measurements show that U/A and 5-FU/A base pairs open with rate constants (k(op)) that are 6- and 13-fold faster than a T/A base pair in the same sequence context. In contrast, these same base pairs have apparent opening equilibrium constants (αK(op)) that differ by less than a factor of 2, indicating that the closing rates (k(cl)) are enhanced by nearly equal amounts as k(op). These dynamic measurements are consistent with the previously proposed kinetic trapping model for extrahelical recognition by UNG. In this model, the enhanced intrinsic opening rates of destabilized base pairs allow the bound glycosylase to sample dynamic extrahelical excursions of thymidine and uracil bases as the first step in recognition.  相似文献   

8.
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.  相似文献   

9.
Deoxyuridine 5′-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival.  相似文献   

10.
The uracil DNA glycosylase superfamily consists of several distinct families. Family 2 mismatch-specific uracil DNA glycosylase (MUG) from Escherichia coli is known to exhibit glycosylase activity on three mismatched base pairs, T/U, G/U and C/U. Family 1 uracil N-glycosylase (UNG) from E. coli is an extremely efficient enzyme that can remove uracil from any uracil-containing base pairs including the A/U base pair. Here, we report the identification of an important structural determinant that underlies the functional difference between MUG and UNG. Substitution of a Lys residue at position 68 with Asn in MUG not only accelerates the removal of uracil from mismatched base pairs but also enables the enzyme to gain catalytic activity on A/U base pairs. Binding and kinetic analysis demonstrate that the MUG-K68N substitution results in enhanced ground state binding and transition state interactions. Molecular modeling reveals that MUG-K68N, UNG-N123 and family 5 Thermus thermophiles UDGb-A111N can form bidentate hydrogen bonds with the N3 and O4 moieties of the uracil base. Genetic analysis indicates the gain of function for A/U base pairs allows the MUG-K68N mutant to remove uracil incorporated into the genome during DNA replication. The implications of this study in the origin of life are discussed.  相似文献   

11.
Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil-DNA glycosylase and dUTPase. Lack of the major uracil-DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200-2,000 uracil/million bases, quantified using a novel real-time PCR-based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil-DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil-DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil-DNA in this evolutionary clade.  相似文献   

12.
Uracil-DNA glycosylase (UNG) is the key enzyme responsible for initiation of base excision repair. We have used both kinetic and binding assays for comparative analysis of UNG enzymes from humans and herpes simplex virus type 1 (HSV-1). Steady-state fluorescence assays showed that hUNG has a much higher specificity constant (k(cat)/K(m)) compared with the viral enzyme due to a lower K(m). The binding of UNG to DNA was also studied using a catalytically inactive mutant of UNG and non-cleavable substrate analogs (2'-deoxypseudouridine and 2'-alpha-fluoro-2'-deoxyuridine). Equilibrium DNA binding revealed that both human and HSV-1 UNG enzymes bind to abasic DNA and both substrate analogs more weakly than to uracil-containing DNA. Structure determination of HSV-1 D88N/H210N UNG in complex with uracil revealed detailed information on substrate binding. Together, these results suggest that a significant proportion of the binding energy is provided by specific interactions with the target uracil. The kinetic parameters for human UNG indicate that it is likely to have activity against both U.A and U.G mismatches in vivo. Weak binding to abasic DNA also suggests that UNG activity is unlikely to be coupled to the subsequent common steps of base excision repair.  相似文献   

13.
Sun Y  Friedman JI  Stivers JT 《Biochemistry》2011,50(49):10724-10731
The human DNA repair enzyme uracil DNA glycosylase (hUNG) locates and excises rare uracil bases that arise in DNA from cytosine deamination or through dUTP incorporation by DNA polymerases. Previous NMR studies of hUNG have revealed millisecond time scale dynamic transitions in the enzyme-nonspecific DNA complex, but not the free enzyme, that were ascribed to a reversible clamping motion of the enzyme as it scans along short regions of duplex DNA in its search for uracil. Here we further probe the properties of the nonspecific DNA binding surface of {(2)H(12)C}{(15)N}-labeled hUNG using a neutral chelate of a paramagnetic Gd(3+) cosolute (Gd(HP-DO3A)). Overall, the measured paramagnetic relaxation enhancements (PREs) on R(2) of the backbone amide protons for free hUNG and its DNA complex were in good agreement with those calculated based on their relative exposure observed in the crystal structures of both enzyme forms. However, the calculated PREs systematically underestimated the experimental PREs by large amounts in discrete regions implicated in DNA recognition and catalysis: active site loops involved in DNA recognition (268-274, 246-250), the uracil binding pocket (143-148, 169-170), a transient extrahelical base binding site (214-216), and a remote hinge region (129-132) implicated in dynamic clamping. These reactive hot spots were not correlated with structural, hydrophobic, or solvent exchange properties that might be common to these regions, leaving the possibility that the effects arise from dynamic sampling of exposed conformations that are distinct from the static structures. Consistent with this suggestion, the above regions have been previously shown to be flexible based on relaxation dispersion measurements and course-grained normal-mode analysis. A model is suggested where the intrinsic dynamic properties of these regions allows sampling of transient conformations where the backbone amide groups have greater average exposure to the cosolute as compared to the static structures. We conclude that PREs derived from the paramagnetic cosolute reveal dynamic hot spots in hUNG and that these regions are highly correlated with substrate binding and recognition.  相似文献   

14.
Gene-targeted knockout mice have been generated lacking the major uracil-DNA glycosylase, UNG. In contrast to ung- mutants of bacteria and yeast, such mice do not exhibit a greatly increased spontaneous mutation frequency. However, there is only slow removal of uracil from misincorporated dUMP in isolated ung-/- nuclei and an elevated steady-state level of uracil in DNA in dividing ung-/- cells. A backup uracil-excising activity in tissue extracts from ung null mice, with properties indistinguishable from the mammalian SMUG1 DNA glycosylase, may account for the repair of premutagenic U:G mispairs resulting from cytosine deamination in vivo. The nuclear UNG protein has apparently evolved a specialized role in mammalian cells counteracting U:A base pairs formed by use of dUTP during DNA synthesis.  相似文献   

15.
The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr.  相似文献   

16.
Uracil‐DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil‐DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non‐enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus‐specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA‐binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. The adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three‐dimensional structure of D4. An overview of the current state of the knowledge on the structure‐function relationship of D4 is provided here.  相似文献   

17.
Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair (BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci. Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features. XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.  相似文献   

18.
19.
Epstein-Barr virus (EBV) is a human gamma-herpesvirus. Within its 86 open reading frame containing genome, two enzymes avoiding uracil incorporation into DNA can be found: uracil triphosphate hydrolase and uracil-DNA glycosylase (UNG). The latter one excises uracil bases that are due to cytosine deamination or uracil misincorporation from double-stranded DNA substrates. The EBV enzyme belongs to family 1 UNGs. We solved the three-dimensional structure of EBV UNG in complex with the uracil-DNA glycosylase inhibitor protein (Ugi) from bacteriophage PBS-2 at a resolution of 2.3 A by X-ray crystallography. The structure of EBV UNG encoded by the BKRF3 reading frame shows the excellent global structural conservation within the solved examples of family 1 enzymes. Four out of the five catalytic motifs are completely conserved, whereas the fifth one, the leucine loop, carries a seven residue insertion. Despite this insertion, catalytic constants of EBV UNG are similar to those of other UNGs. Modelling of the EBV UNG-DNA complex shows that the longer leucine loop still contacts DNA and is likely to fulfil its role of DNA binding and deformation differently than the enzymes with previously solved structures. We could show that despite the evolutionary distance of EBV UNG from the natural host protein, bacteriophage Ugi binds with an inhibitory constant of 8 nM to UNG. This is due to an excellent specificity of Ugi for conserved elements of UNG, four of them corresponding to catalytic motifs and a fifth one corresponding to an important beta-turn structuring the catalytic site.  相似文献   

20.
尿嘧啶糖基化酶是碱基切除修复过程的起始酶,对于维护基因稳定具有重要意义。在不同组织及不同细胞周期中,该酶的表达水平存在差异。通过反转录PCR克隆了人尿嘧啶糖基化酶的cDNA编码序列,进一步以克隆所得的已知UNG基因拷贝数的重组质粒作为定量标准,通过实时荧光定量RT-PCR测定了食管癌病人手术切除组织中尿嘧啶糖基化酶的mRNA水平,探讨了尿嘧啶糖基化酶表达水平与食管癌之间的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号