首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivesicular bodies are endocytic compartments containing multiple small vesicles that originate from the invagination and ‘pinching off’ of the limiting membrane into the luminal space [1], [2], [3]. The molecular mechanisms responsible for the formation of these compartments are unknown. In the human melanoma cell line Mel JuSo, newly synthesised major histocompatibility complex (MHC) class II molecules accumulate in multivesicular early lysosomes [4]. The phosphatidylinositol (PI) 3-kinase inhibitor wortmannin induced the transient vacuolation of early MHC class II compartments, but also of early and late endosomes. We demonstrate that endocytic membrane influx is required for the wortmannin-induced swelling of vesicles. The wortmannin-induced vacuoles contained a reduced number of intraluminal vesicles that were linked to the limiting membrane by membraneous connections. These data suggest that wortmannin inhibits the invagination and/or pinching off of intraluminal vesicles and provide evidence of a role for PI 3-kinase in multivesicular body morphogenesis. We propose that the wortmannin-induced vacuolation occurs as a result of the inability of multivesicular bodies to store endocytosed membranes as intraluminal vesicles thereby causing the formation of large ‘empty’ vacuoles.  相似文献   

2.
Small GTPase RhoA regulates signal transduction from receptors in the membrane to a variety of cellular events related to cell morphology, motility, cytoskeletal dynamics, cytokinesis, and tumour progression, but it is unclear how RhoA regulates intracellular membrane dynamics of lysosomes. We showed previously by confocal immunofluorescence microscopy that the transfection of dominant active RhoA in MM1 cells causes the dispersal translocation of lysosomes stained for cathepsin D throughout the cytoplasm. Y-27632, a selective inhibitor of p160ROCK, impeded the cellular redistribution of lysosomes and promoted reclustering of lysosomes toward the perinuclear region. Here we have further investigated whether the acidic lysosomal vesicles dispersed throughout the cytoplasm are applied to the early endosomes in the endocytic pathway, and we demonstrate that the dispersed lysosomes were accessible to endocytosed molecule such as dextran, and their acidity was not changed, as determined by increased accumulation of the acidotropic probe LysoTracker Red. Brefeldin A did not induce the tabulation of these dispersed lysosomes, but it caused early endosomes to form an extensive tubular network. The dispersed lysosomes associated with cathepsin D and LIMPII were not colocalized with early endosomes, and these vesicles were not inaccessible to the endocytosed anti-transferrin receptor antibody. Moreover, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, induced a dramatic change in LIMPII-containing structures in which LIMPII-positive swollen large vacuoles were increased and small punctate structures disappeared in the cytoplasm. These swollen vacuoles were not doubly positive for LIMPII and transferrin receptor, and were not inaccessible to the internalized anti-transferrin receptor antibody. Therefore, our novel findings presented in this paper indicate that RhoA activity causes a selective translocation of lysosomes without perturbing the machinery of endocytic pathway.  相似文献   

3.
To determine which endocytic compartments are sensitive to sucrose-induced osmotic swelling, CHO and Vero cells were cultured for 1-3 days in media containing 0.03 to 0.05 M sucrose. (Sucrose is internalized but not digested by these cells.) To immunolocalize late endocytic compartments, cells were fixed with formaldehyde and labeled with antibodies against the 215-kDa mannose 6-phosphate receptor (prelysosomal compartment) and LAMP-1 and -2 (mature lysosomes). Early endosomes were labeled by a 2-min uptake of lucifer yellow, mature lysosomes by greater than or equal to 16-h uptake of lucifer yellow followed by a 2-h chase. The data showed that sucrose induced swelling of mature lysosomes only (mannose 6-phosphate receptor negative, LAMP-1 and LAMP-2 positive); early endosomes and the prelysosomal compartment were not affected by the presence of sucrose, i.e., osmotically swollen. Accumulation of lucifer yellow in the swollen compartment was insensitive to cycloheximide. These results suggest, by inference, that the complement of membrane transport proteins that regulate the osmotic properties of endocytic organelles must be discontinuously distributed along the endocytic pathway.  相似文献   

4.
Previously we have shown that PDGF receptor mutants that do not bind PI- 3 kinase internalize after ligand binding, but fail to downregulate and degrade. To define further the role of PI-3 kinase in trafficking processes in mammalian cells, we have investigated the effects of a potent inhibitor of PI-3 kinase activity, wortmannin. At nanomolar concentrations, wortmannin inhibited both the transfer of PDGF receptors from peripheral compartments to juxtanuclear vesicles, and their subsequent degradation. In contrast, the delivery of soluble phase markers to lysosomes, assessed by the accumulation of Lucifer yellow (LY) in perinuclear vesicles after 120 min of incubation, was not blocked by wortmannin. Furthermore, wortmannin did not affect the rate of transferrin uptake, and caused only a small decrease in its rate of recycling. Thus, the effects of wortmannin on PDGFr trafficking are much more pronounced than its effects on other endocytic events. Unexpectedly, wortmannin also caused a striking effect on the morphology of endosomal compartments, marked by tubulation and enlargement of endosomes containing transferrin or LY. This effect was somewhat similar to that produced by brefeldin A, and was also blocked by pre-treatment of cells with aluminum fluoride (AlF4-). These results suggest two sites in the endocytic pathway where PI-3 kinase activity may be required: (a) to sort PDGF receptors from peripheral compartments to the lysosomal degradative pathway; and (b) to regulate the structure of endosomes containing lysosomally directed and recycling molecules. This latter function could be mediated through the activation of AlFt4-)-sensitive GTP-binding proteins downstream of PI-3 kinase.  相似文献   

5.
Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium.  相似文献   

6.
Dileucine-based motifs have been shown to regulate endosomal sorting of a number of membrane proteins. Previously, we have shown that the dileucine motif Leu(679), Leu(680) in the juxtamembrane domain of the human epidermal growth factor receptor is involved in the endosome-to-lysosome transport of ligand-receptor complexes. Substitution of alanine residues for Leu(679), Leu(680) led to a reduction in ligand-induced receptor degradation without affecting internalization. In the current study, we have further characterized ligand-dependent intracellular sorting of EGF receptors containing a L679A, L680A. Immunocytochemical studies reveal that although mutant receptors redistribute from the cell surface to transferrin receptor-positive endocytic vesicles similar to wild-type following ligand stimulation, their accumulation in Lamp-1-positive late endosomes/lysosomes is retarded compared to wild-type. Kinetic analysis of (125)I-EGF trafficking shows that reduced accumulation of internalized mutant receptors in Lamp-1-positive vesicles is due to rapid recycling of ligand-receptor complexes from early endocytic compartments. In addition, the fraction of intracellular (125)I-EGF that is transported to late endocytic compartments in cells with mutant receptors is not as efficiently degraded as it is in cells with wild-type receptors. Furthermore, wild-type receptors in endocytic vesicles isolated by Percoll gradient fractionation are more resistant to in vitro digestion with proteinase K than mutant receptors. We propose that mutant receptors interact inefficiently with lysosomal sorting machinery, leading to their increased recycling. Our results are consistent with a model in which the Leu(679), Leu(680) signal facilitates sequestration of ligand-receptor complexes into internal vesicles of multivesicular endosome-to-lysosome transport intermediates.  相似文献   

7.
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.  相似文献   

8.
Immunoelectron microscopy was used to localize the brush border hydrolases sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPPIV) in the human colon carcinoma cell line Caco-2. Both enzymes were detected at the microvillar membrane, in small vesicles and multivesicular bodies (MVBs), and in lysosomal bodies. In addition, DPPIV was found in the Golgi apparatus, a variety of apical vesicles and tubules, and at the basolateral membrane. To investigate whether the hydrolases present in the lysosomal bodies were endocytosed from the apical membrane, endocytic compartments were marked with the endocytic tracer cationized ferritin (CF). After internalization from the apical membrane through coated pits, CF was first recovered in apical vesicles and tubules, and larger electronlucent vesicles (early endosomes), and later accumulated in MVBs (late endosomes) and lysosomal bodies. DPPIV was localized in a subpopulation of both early and late endocytic vesicles, which contained CF after 3 and 15 min of uptake, respectively. Also, internalization of the specific antibody against DPPIV and gold labeling on cryosections showed endocytosed DPPIV in both early and late endosomes. However, unlike CF, no accumulation of DPPIV was seen in MVBs or lysosomal bodies after longer chase times. The results indicate that in Caco-2 cells the majority of brush border hydrolases present in lysosomal bodies are not endocytosed from the brush border membrane. Furthermore, the labeling patterns obtained, suggest that late endosomes may be involved in the recycling of endocytosed DPPIV to the microvilli.  相似文献   

9.
《The Journal of cell biology》1995,129(5):1229-1240
Incubation of alveolar macrophages in hypoosmotic K(+)-containing buffers results in persistent cell swelling and an inability to undergo regulatory volume decrease. We demonstrate that cells incubated in hypo- K+ show an inhibition of endocytosis without any observed alteration in recycling. The inhibition of endocytosis affected all forms of membrane internalization, receptor and fluid phase. Both increased cell volume and the inhibition of endocytosis could be released upon return of cells to iso-Na+ buffers. The ability to synchronize the endocytic apparatus allowed us to examine hypotheses regarding the origin and maturation of endocytic vesicles. Incubation in hypo-K+ buffers had no effect on the delivery of ligands to degradative compartments or on the return of previously internalized receptors to the cell surface. Thus, membrane recycling and movement of internalized components to lysosomes occurred in the absence of continued membrane influx. We also demonstrate that fluorescent lipids, that had been incorporated into early endosomes, returned to the cell surface upon exposure of cells to hypo-K+ buffers. These results indicate that the early sorting endosome is a transient structure, whose existence depends upon continued membrane internalization. Our data supports the hypothesis that the transfer of material to lysosomes can best be explained by the continuous maturation of endosomes.  相似文献   

10.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin- dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)- depleted cells with Con A-gold for 15 min, approximately 75% of Con A- gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)- depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

11.
Functional symmetry of endomembranes   总被引:1,自引:0,他引:1       下载免费PDF全文
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral ("early") and centralized ("late") structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived "mirror compartments" at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation.  相似文献   

12.
Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin-myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA(-)/B(-), and myoB(-) cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA(-)/B(-) cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.  相似文献   

13.
The impact of an altered endocytic environment on the biogenesis of lysosomes was studied in fibroblasts of patients suffering from sialic acid storage disease (SASD). This inherited disorder is characterized by the accumulation of acidic monosaccharides in lysosomal compartments and a concomitant decrease of their buoyant density. We demonstrate that C-terminal trimming of the lysosomal cysteine proteinase cathepsin B is inhibited in SASD fibroblasts. This late event in the biosynthesis of cathepsin B normally takes place in mature lysosomes, suggesting an impaired biogenesis of these organelles in SASD cells. When normal fibroblasts are loaded with sucrose, which inhibits transport from late endosomes to lysosomes, C-terminal cathepsin B processing is prevented to the same extent. Further characterization of the terminal endocytic compartments of SASD cells revealed properties usually associated with late endosomes/prelysosomes. In addition to a decreased buoyant density, SASD "lysosomes" show a reduced acidification capacity and appear smaller than their normal counterparts. We conclude that the accumulation of small non-diffusible compounds within endocytic compartments interferes with the formation of mature lysosomes and that the acidic environment of the latter organelles is a prerequisite for C-terminal processing of lysosomal hydrolases.  相似文献   

14.
Pretreatment of J774 mouse macrophages by the dicationic macrolide antibiotic, azithromycin (AZ), selectively inhibited fluid-phase endocytosis of horseradish peroxidase and lucifer yellow, but not phagocytosis of latex beads. AZ delayed sequestration of receptor-bound transferrin and peroxidase-anti-peroxidase immune complexes into cell-surface endocytic pits and vesicles, but did not slow down the subsequent rate of receptor-mediated endocytosis. AZ down-regulated cell surface transferrin receptors, but not Fc gamma receptors, by causing a major delay in the accessibility of internalized transferrin receptors to the recycling route, without slowing down subsequent efflux, resulting in redistribution of the surface pool to an intracellular pool. Acidotropic accumulation of AZ was associated with an extensive vacuolation of late endosomes/lysosomes, and these compartments became inaccessible to horseradish peroxidase and immune complexes, but not to latex beads. The inhibitory profile of AZ cannot be solely accounted for by vacuolation and interference with acidification. AZ may help in dissecting various steps of the endocytic apparatus such as lateral mobility of receptors at the plasma membrane, formation of clathrin-independent endocytic vesicles, orientation of transferrin receptors into the recycling route, and fusogenicity with lysosomes.  相似文献   

15.
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.  相似文献   

16.
ABSTRACT: BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.  相似文献   

17.
The dicationic macrolide antibiotic azithromycin inhibits the uptake of horseradish peroxidase (HRP) by fluid-phase pinocytosis in fibroblasts in a time- and concentration-dependent fashion without affecting its decay (regurgitation and/or degradation). The azithromycin effect is additive to that of nocodazole, known to impair endocytic uptake and transport of solutes along the endocytic pathway. Cytochemistry (light and electron microscopy) shows a major reduction by azithromycin in the number of HRP-labeled endocytic vesicles at 5 min (endosomes) and 2 h (lysosomes). Within 3 h of exposure, azithromycin also causes the appearance of large and light-lucentlelectron-lucent vacuoles, most of which can be labeled by lucifer yellow when this tracer is added to culture prior to azithromycin exposure. Three days of treatment with azithromycin result in the accumulation of very large vesicles filled with pleiomorphic content, consistent with phospholipidosis. These vesicles are accessible to fluorescein-labeled bovine serum albumin (FITC-BSA) and intensively stained with filipin, indicating a mixed storage with cholesterol. The impairment of HRP pinocytosis directly correlates with the amount of azithromycin accumulated by the cells, but not with the phospholipidosis induced by the drug. The proton ionophore monensin, which completely suppresses azithromycin accumulation, also prevents inhibition of HRP uptake. Erythromycylamine, another dicationic macrolide, also inhibits HRP pinocytosis in direct correlation with its cellular accumulation and is as potent as azithromycin at equimolar cellular concentrations. We suggest that dicationic macrolides inhibit fluid-phase pinocytosis by impairing the formation of pinocytic vacuoles and endosomes.  相似文献   

18.
Treatment with the phosphatidylinositol 3-kinase inhibitor wortmannin promotes approximately 30% decrease in the steady-state number of cell-surface transferrin receptors. This effect is rapid and dose dependent, with maximal down-regulation elicited with 30 min of treatment and with an IC50 approximately 25 nM wortmannin. Wortmannin-treated cells display an increased endocytic rate constant for transferrin internalization and decreased exocytic rate constants for transferrin recycling. In addition to these effects in vivo, wortmannin is a potent inhibitor (IC50 approximately 15 nM) of a cell-free assay that detects the delivery of endocytosed probes into a common compartment. Inhibition of the in vitro assay involves the inactivation of a membrane-associated factor that can be recruited onto the surface of vesicles from the cytosol. Its effects on the cell-free assay suggest that wortmannin inhibits receptor sorting and/or vesicle budding required for delivery of endocytosed material to "mixing" endosomes. This idea is consistent with morphological changes induced by wortmannin, which include the formation of enlarged transferrin-containing structures and the disruption of the perinuclear endosomal compartment. However, the differential effects of wortmannin, specifically increased transferrin receptor internalization and inhibition of receptor recycling, implicate a role for phosphatidylinositol 3-kinase activity in multiple sorting events in the transferrin receptor's membrane traffic pathway.  相似文献   

19.
Lysosomes are dynamic organelles receiving membrane traffic input from the biosynthetic, endocytic and autophagic pathways. They may be regarded as storage organelles for acid hydrolases and are capable of fusing with late endosomes to form hybrid organelles where digestion of endocytosed macromolecules occurs. Reformation of lysosomes from the hybrid organelles involves content condensation and probably removal of some membrane proteins by vesicular traffic. Lysosomes can also fuse with the plasma membrane in response to cell surface damage and a rise in cytosolic Ca 2+ concentration. This process is important in plasma membrane repair. The molecular basis of membrane traffic pathways involving lysosomes is increasingly understood, in large part because of the identification of many proteins required for protein traffic to vacuoles in the yeast Saccharomyces cerevisiae. Mammalian orthologues of these proteins have been identified and studied in the processes of vesicular delivery of newly synthesized lysosomal proteins from the trans-Golgi network, fusion of lysosomes with late endosomes and sorting of membrane proteins into lumenal vesicles. Several multi-protein oligomeric complexes required for these processes have been identified. The present review focuses on current understanding of the molecular mechanisms of fusion of lysosomes with both endosomes and the plasma membrane and on the sorting events required for delivery of newly synthesized membrane proteins, endocytosed membrane proteins and other endocytosed macromolecules to lysosomes.  相似文献   

20.
Charette SJ  Cosson P 《FEBS letters》2006,580(20):4923-4928
Exocytosis of late endocytic compartments in Dictyostelium has mostly been studied by live microscopy. Here we show that this exocytosis is accompanied by a complete fusion of late endosomes with the plasma membrane resulting in the transient formation of membrane microdomains that can be visualized by immunofluorescence in fixed cells. This permitted to demonstrate that fusion of late endocytic compartments with the cell surface does not occur in regions of the plasma membrane engaged in the formation of pseudopods, macropinosomes or phagosomes. Our results propose that exocytosis of late endosomes and actin-driven membrane remodeling are mutually exclusive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号