首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were approximately 70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.  相似文献   

2.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

3.
Summary Insulin stimulation of glucose transport in skeletal muscle is considered to involve translocation of the skeletal muscle_adipose tissue glucose transporter isoform, Glut 4, from cytosolic vesicles to the cell surface. The current study was undertaken to investigate Glut 4 translocation in skeletal muscle of healthy volunteers during euglycaemic insulin infusion. Previous quantitative studies of glucose transport have depended on differential centrifugation methods, which demand large biopsy samples. In this study we have developed and applied a quantitative method using confocal laser microscopy, well suited to the small needle biopsies that are typically available clinically. Percutaneous biopsy of vastus lateralis skeletal muscle was performed during basal and euglycaemic insulin-stimulated conditions, and Glut 4 translocation was assessed using immunohistochemical labelling and confocal laser microscopy imaging in 14 healthy lean subjects. At physiological hyperinsulinaemia (536 _ 16 pm), mean systemic glucose utilization was 9.27 _ 0.78 mg_kg-min, indicative of normal insulin sensitivity. The presence of Glut 4 at the sarcolemma increased significantly (p· 0.01), with a ratio of insulin-stimulated to basal sarcolemmal Glut 4 of 1.85 _ 0.33, indicative of insulin-stimulated Glut 4 translocation. The area of Glut 4-labelled sites also increased significantly (p· 0.01) in response to insulin infusion; this ratio was 1.56 _ 0.13. Thus, at physiological hyperinsulinaemia, the amount of Glut 4 at the cell surface of skeletal muscle in healthy, lean individuals increases approximately twofold over basal conditions, and this process can be measured using immunohistochemical labelling imaged by confocal laser scanning microscopy. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Glut1 transgenic mice were bred with transgenic mice that overexpress hexokinase II in skeletal muscle in order to determine whether whole-body glucose disposal could be further augmented in mice overexpressing glucose transporters. Overexpression of hexokinase alone in skeletal muscle had no effect on glucose transport or metabolism in isolated muscles, nor did it alter blood glucose levels or the rate of whole-body glucose disposal. Expression of the hexokinase transgene in the context of the Glut1 transgenic background did not alter glucose transport in isolated muscles but did cause additional increases in steady-state glucose 6-phosphate (3.2-fold) and glycogen (7.5-fold) levels compared with muscles that overexpress the Glut1 transporter alone. Surprisingly, however, these increases were not accompanied by a change in basal or insulin-stimulated whole-body glucose disposal in the doubly transgenic mice compared with Glut1 transgenic mice, probably due to an inhibition of de novo glycogen synthesis as a result of the high levels of steady-state glycogen in the muscles of doubly transgenic mice (430 micromol/g versus 10 micromol/g in wild-type mice). We conclude that the hexokinase gene may not be a good target for therapies designed to counteract insulin resistance or hyperglycemia.  相似文献   

6.
Increased glucose transporter (GLUT4) protein expression in hyperthyroidism   总被引:2,自引:0,他引:2  
We have studied skeletal muscle glucose uptake by perfused hindquarter preparations from rats treated with thyroxine. Basal glucose uptake (in the absence of insulin) was approximately 2 fold higher in muscle of hyperthyroid rats compared to controls. Insulin (10(-7) M) stimulated glucose uptake 4.0 and 6.8 fold in the 10 day and 30 day controls rats, respectively. Maximal glucose uptake (10(-7) M insulin) was not different in control and hyperthyroid rats and thus insulin responsiveness in the hyperthyroid animals was reduced to 2.5 fold stimulation. The abundance of the insulin-sensitive glucose transporter protein (muscle/fat, GLUT-4), measured by Western blot analysis using polyclonal antisera, was higher in skeletal muscle from both groups of hyperthyroid rats. These studies indicate that thyroid hormones increase basal glucose uptake in skeletal muscle and this is due, at least in part, to an increment of GLUT-4 isoform. Increased expression of muscle glucose transporter proteins may be responsible for the increased peripheral glucose utilization seen in hyperthyroidism.  相似文献   

7.
To determine the contribution of hyperglycemia to the insulin resistance in various insulin-sensitive tissues of Zucker diabetic fatty (ZDF) rats, T-1095, an oral sodium-dependent glucose transporter (SGLT) inhibitor, was administered by being mixed into food. Long-term treatment with T-1095 lowered both fed and fasting blood glucose levels to near normal ranges. A hyperinsulinemic euglycemic clamp study that was performed after 4 wk of T-1095 treatment demonstrated partial recovery of the reduced glucose infusion rate (GIR) in the T-1095-treated group. In the livers of T-1095-treated ZDF rats, hepatic glucose production rate (HGP) and glucose utilization rate (GUR) showed marked recovery, with almost complete normalization of reduced glucokinase/glucose-6-phosphatase (G-6-Pase) activities ratio. In adipose tissues, decreased GUR was also shown to be significantly improved with a normalization of insulin-induced GLUT-4 translocation. In contrast, in skeletal muscles, the reduced GUR was not significantly improved in response to amelioration of hyperglycemia by T-1095 treatment. These results suggest that the contribution of hyperglycemia to insulin resistance in ZDF rats is very high in the liver and considerably elevated in adipose tissues, although it is very low in skeletal muscle.  相似文献   

8.
Phenethyl isothiocyanate (PEITC) is an aromatic isothiocyanate present in cruciferous vegetables. Several studies have shown that isothiocyanates regulate various intracellular signaling pathways, and thereby show anti-inflammatory and detoxifying activities. However, little is known about the effects of PEITC on glucose metabolism. In this study, we examined whether PEITC promotes glucose utilization in mouse skeletal muscle cells, C2C12 myotubes. PEITC induced glucose uptake, glucose transporter 4 (Glut4) translocation to the plasma membrane, and activation of Akt and ERK in C2C12 cells. Inhibition of Akt suppressed PEITC-induced Glut4 translocation and glucose uptake, whereas ERK inhibition did not. Furthermore, PEITC increased phosphorylation of ErbB2 and ErbB3. Treatment with a pan-ErbB inhibitor reduced Akt activation and the subsequent glucose uptake induced by PEITC. These results indicate that PEITC promotes glucose utilization through the ErbB/Akt pathway in C2C12 myotubes. PEITC may therefore serve as a dietary constituent with beneficial effects on the carbohydrate metabolism.

Abbreviations: PEITC: phenethyl isothiocyanate; Glut4: glucose transporter 4; PI3K: phosphatidylinositide 3-kinase; Nrf2: erythroid?2-related factor; ARE: antioxidant response element; HO?1: heme oxygenase?1; NRG: neuregulin  相似文献   


9.
An improved immunogold labeling procedure was used to examine the subcellular distribution of glucose transporters in Lowricryl HM20- embedded skeletal muscle from transgenic mice overexpressing either Glut1 or Glut4. In basal muscle, Glut4 was highly enriched in membranes of the transverse tubules and the terminal cisternae of the triadic junctions. Less than 10% of total muscle Glut4 was present in the vicinity of the sarcolemmal membrane. Insulin treatment increased the number of gold particles associated with the transverse tubules and the sarcolemma by three-fold. However, insulin also increased the total Glut4 immunogold reactivity in muscle ultrathin sections by up to 1.8- fold and dramatically increased the amount of Glut4 in muscle sections as observed by laser confocal immunofluorescence microscopy. The average diameter of transverse tubules observed in longitudinal sections increased by 50% after insulin treatment. Glut1 was highly enriched in the sarcolemma, both in the basal state and after insulin treatment. Disruption of transverse tubule morphology by in vitro glycerol shock completely abolished insulin-stimulated glucose transport in isolated rat epitrochlearis muscles. These data indicate that: (a) Glut1 and Glut4 are targeted to distinct plasma membrane domains in skeletal muscle; (b) Glut1 contributes to basal transport at the sarcolemma and the bulk of insulin-stimulated transport is mediated by Glut4 localized in the transverse tubules; (c) insulin increases the apparent surface area of transverse tubules in skeletal muscle; and (d) insulin causes the unmasking of a COOH-terminal antigenic epitope in skeletal muscle in much the same fashion as it does in rat adipocytes.  相似文献   

10.
Glucose transport in 3T3L1 adipocytes is mediated by two facilitated diffusion transport systems. We examined the effect of chronic glucose deprivation on transport activity and on the expression of the HepG2 (GLUT 1) and adipocyte/muscle (GLUT 4) glucose transporter gene products in this insulin-sensitive cell line. Glucose deprivation resulted in a maximal increase in 2-deoxyglucose uptake of 3.6-fold by 24 h. Transport activity declined thereafter but was still 2.4-fold greater than the control by 72 h. GLUT 1 mRNA and protein increased progressively during starvation to values respectively 2.4- and 7.0-fold greater than the control by 72 h. Much of the increase in total immunoreactive GLUT 1 protein observed later in starvation was the result of the accumulation of a non-functional or mistargeted 38 kDa polypeptide. Immunofluorescence microscopy indicated that increases in GLUT 1 protein occurred in presumptive plasma membrane (PM) and Golgi-like compartments during prolonged starvation. The steady-state level of GLUT 4 protein did not change during 72 h of glucose deprivation despite a greater than 10-fold decrease in the mRNA. Subcellular fractionation experiments indicated that the increased transport activity observed after 24 h of starvation was principally the result of an increase in the 45-50 kDa GLUT 1 transporter protein in the PM. The level of the GLUT 1 transporter in the PM and low-density microsomes (LDM) was increased by 3.9- and 1.4-fold respectively, and the GLUT 4 transporter content of the PM and LDM was 1.7- and 0.6-fold respectively greater than that of the control after 24 h of glucose deprivation. These data indicate that newly synthesized GLUT 1 transporters are selectively shuttled to the PM and that GLUT 4 transporters undergo translocation from an intracellular compartment to the PM during 24 h of glucose starvation. Thus glucose starvation results in an increase in glucose transport in 3T3L1 adipocytes via a complex series of events involving increased biosynthesis, decreased turnover and subcellular redistribution of transporter proteins.  相似文献   

11.
Differentiated rat L6 skeletal muscle cell cultures maintained in glucose-deficient medium containing 25 mM xylose displayed a rapid, reversible, time- and concentration-dependent 3-5-fold increase in glucose transport activity. Glucose deprivation in the continuous presence of insulin (24 h) resulted in an overall 9-10-fold stimulation of glucose transport activity. In contrast, acute (30 min) and chronic (24 h) insulin treatment of L6 cells maintained in high glucose (25 mM)-containing medium resulted in a 1.5- and 4-fold induction of glucose transport activity, respectively. Acute glucose deprivation and/or insulin treatment had no significant effect on the total amount of glucose transporter protein, whereas the long-term insulin- and glucose-dependent regulation of glucose transport activity directly correlated with an increase in the cellular expression of the glucose transporter protein. In situ hybridization of the L6 cells demonstrated a 3-, 4-, and 6-fold increase in glucose transporter mRNA induced by glucose deprivation, insulin, and glucose deprivation plus insulin treatments, respectively. Similarly, Northern blot analysis of total RNA isolated from glucose-deprived, insulin, and glucose-deprived plus insulin-treated cells resulted in a 4-, 3-, and 9-fold induction of glucose transporter mRNA, respectively. The continuous presence of insulin in the medium, either in the presence or absence of glucose, resulted in a transient alteration of the glucose transporter mRNA. The relative amount of the glucose transporter mRNA was maximally increased at 6-12 h which subsequently returned to the basal steady-state level within 48 h. These data demonstrate a role for insulin and glucose in the overall regulation of glucose transporter gene expression which may account for the alteration of glucose transporter activity of muscle tissue observed in pathophysiological states such as type II diabetes mellitus.  相似文献   

12.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

13.
Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.  相似文献   

14.
Selenium-enriched exopolysaccharides (EPS) produced by Enterobacter cloacae Z0206 have been proven to possess effect on reducing blood glucose level in diabetic mice. To investigate the specific mechanism, we studied the effects of oral supply with EPS on skeletal muscle glucose transportation and consumption in high-fat-diet-induced diabetic KKAy mice. We found that EPS supplementation increased expressions of glucose transporter 4 (Glut4), hexokinase 2 (hk2), phosphorylation of AMP-activated kinase subunit α2 (pAMPKα2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and increased expression of characteristic protein of oxidative fibers such as troponin I and cytochrome c (Cytc). Furthermore, we found that EPS increased glucose uptake and expressions of pAMPKα2 and PGC-1α in palmitic acid (PA)-induced C2C12 cells. However, while EPS inhibited AMPKα2 with interference RNA (iRNA), effects of EPS on the improvement of glucose uptake diminished. These results indicated that EPS may improve skeletal muscle glucose uptake of diabetic KKAy mice through AMPKα2-PGC-1α pathway.  相似文献   

15.
The identification of proteins which determine fat and lean body mass composition is critical to better understanding and treating human obesity. TDP-43 is a well-conserved RNA-binding protein known to regulate alternative splicing and recently implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). While TDP-43 knockout mice show early embryonic lethality, post-natal conditional knockout mice show weight loss, fat depletion, and rapid death, suggesting an important role for TDP-43 in regulating energy metabolism. Here we report, that over-expression of TDP-43 in transgenic mice can result in a phenotype characterized by increased fat deposition and adipocyte hypertrophy. In addition, TDP-43 over-expression in skeletal muscle results in increased steady state levels of Tbc1d1, a RAB-GTPase activating protein involved in Glucose 4 transporter (Glut4) translocation. Skeletal muscle fibers isolated from TDP-43 transgenic mice show altered Glut4 translocation in response to insulin and impaired insulin mediated glucose uptake. These results indicate that levels of TDP-43 regulate body fat composition and glucose homeostasis in vivo.  相似文献   

16.
Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4) in skeletal muscle, heart, and adipose tissue (G4Tg) exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT) littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK) activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase) activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ∼115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart, and/or adipose tissue likely positively impact the liver.  相似文献   

17.
18.
Small glucose transporter 4 (Glut4)-containing vesicles represent the major insulin-responsive compartment in fat and skeletal muscle cells. The molecular mechanism of their biogenesis is not yet elucidated. Here, we studied the role of the newly discovered family of monomeric adaptor proteins, GGA (Golgi-localized, gamma-ear-containing, Arf-binding proteins), in the formation of small Glut4 vesicles and acquisition of insulin responsiveness in 3T3-L1 adipocytes. In these cells, all three GGA isoforms are expressed throughout the differentiation process. In particular, GGA2 is primarily present in trans-Golgi network and endosomes where it demonstrates a significant colocalization with the recycling pool of Glut4. Using the techniques of immunoadsorption as well as glutathione-S-transferase pull-down assay we found that Glut4 vesicles (but not Glut4 per se) interact with GGA via the Vps-27, Hrs, and STAM (VHS) domain. Moreover, a dominant negative GGA mutant inhibits formation of Glut4 vesicles in vitro. To study a possible role of GGA in Glut4 traffic in the living cell, we stably expressed a dominant negative GGA mutant in 3T3-L1 adipocytes. Formation of small insulin-responsive Glut4-containing vesicles and insulin-stimulated glucose uptake in these cells were markedly impaired. Thus, GGA adaptors participate in the formation of the insulin-responsive vesicular compartment from the intracellular donor membranes both in vivo and in vitro.  相似文献   

19.
Overnourishment during the suckling period [small litter (SL)] results in the development of adult-onset obesity. To investigate the mechanisms that underlie the development of insulin resistance in the skeletal muscle of young and adult female SL rats, the litter size was reduced to 3 female pups/dam (SL) while the control litter had 12 pups/dam from the postnatal Day 3 until Day 21. Protein content, mRNA expression and methylation status of the promoter region of key components in the insulin signaling pathway were determined in the skeletal muscle of SL rats. Overnutrition during the suckling period resulted in increased body weight gains, hyperphagia and adult-onset obesity as well as increased levels of serum insulin, glucose and leptin in SL rats. No differences in the expression of total protein as well as tyrosine phosphorylation of insulin receptor β and glucose transporter 4 (Glut4) were observed in skeletal muscle between two groups at both ages. A significant decrease of total insulin receptor substrate 1 (IRS-1) and an increase in serine phosphorylation of IRS-1 were observed in skeletal muscle from adult SL rats. Hypermethylation of specific cytidyl-3',5'phospho-guanylyl (CpG) dinucleotides in the proximal promoter region was observed for the Irs1 and Glut4 genes, which correlated with the reduction in Irs1 and Glut4 mRNA levels in skeletal muscle of adult SL rats. Our results suggest that epigenetic modifications of the key genes involved in the insulin signaling pathway in skeletal muscle could result in the development of insulin resistance in SL female rats.  相似文献   

20.
We studied glucose and water passage across wild type (WT) glucose transporter Glut1 and its T310I pathogenic mutant, expressing them in Xenopus laevis oocytes. We found that the T310I mutation produced a 8-fold decrease in glucose transport (zero-trans influx, 13 +/- 2% compared with WT), accompanied by a 2.8-fold increase in the osmotic water permeability (P(f) 280 +/- 40% compared with WT), and no change in the diffusional water permeability (P(d)). The dependence of glucose and water transports on the amounts of mutant cRNA injected was identical exponential buildups (k = 19.7 ng), suggesting that they depend similarly on the quaternary structure. The E(a) values for P(f) were 16 +/- 0.4 (WT) and 11 +/- 1 kcal mol(-1) (T310I). We report for the first time that 10 mm d-glucose and l-glucose inhibit P(f) by approximately 45% in the WT but not in the T310I mutant. In addition, 10 mm maltose reduces P(f) (15-20%) in both cases. However, 5 mm l-glucose increased the P(f) of T310I, consistent with a cooperative effect. These experimental observations and an analysis of our three-dimensional model strongly suggest the presence of two channels per Glut1 monomer, one of which can be blocked by the mutation T310I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号