首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Currently, there is an ever-increasing need to develop environmentally benign processes in place of synthetic protocols. As a result, researchers in the field of nanoparticle synthesis are focusing their attention on microbes from rare biological ecosystems. One potential actinobacterium, Streptomyces minutiscleroticus M10A62 isolated from a magnesite mine had the ability to synthesize selenium nanoparticles (SeNPs), extracellularly. Actinobacteria mediated SeNP synthesis were characterized by UV–visible, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and high resolution transmission electron microscopy (HR-TEM) analysis. The UV-spectral analysis of SeNPs indicated the maximum absorption at 510 nm, FT-IR spectral analysis confirms the presence of capping protein, peptide, amine and amide groups. The selenium signals confirm the presence of SeNPs. All the diffraction peaks in the XRD pattern and HR-TEM confirm the size of SeNPs in the range of 10–250 nm. Further, the anti-biofilm and antioxidant activity of the SeNPs increased proportionally with rise in concentration, and the test strains reduced to 75% at concentration of 3.2 μg. Selenium showed significant anti-proliferative activity against HeLa and HepG2 cell lines. The wound healing activity of SeNPs reveals that 5% selenium oinment heals the excision wound of Wistar rats up to 85% within 18 days compared to the standard ointment. The biosynthesized SeNPs exhibited good antiviral activity against Dengue virus. The present study concludes that extremophilic actinobacterial strain was a novel source for SeNPs with versatile biomedical applications and larger studies are needed to quantify these observed effects of SeNPs.  相似文献   

2.
In this study the green method for synthesizing selenium nanoparticles (SeNPs) is experienced, in which the leaf extract of Adiantum capillus was used as an effective chelating and capping agent for producing SeNPs. The characterization techniques that achieved to confirm the synthesis and the structure details of the SeNPs were: UV–Vis spectroscopy, FT-IR analysis, XRD, EDX and SEM analysis. The biological activity of the synthesized SeNPs were tested and compared to the crude extract of Adiantum capillus on gentamicin model of nephrotoxicity in Wistar rats. Sera were used to test the pro-inflammatory cytokines Tumor necrosis factor alpha (TNF-α) and Interleukin beta (IL-β) levels. Histopathology and immunohistochemistry analysis for the apoptosis regulator protein (Bcl-2) and the interstitial filament protein (Vimentin) were performed. Results revealed that the synthesized SeNPs peak appeared at 400–430 nm wave length with crystallite particle size is around 37 nm. The predominant shape is spherical and cubic at different magnification levels with a narrow size distribution of 22.04–128.43 nm. The synthesized SeNPs showed a strong protective effect against gentamicin induced toxic effects to the rat’s kidneys obtained from the (kidney function parameters, histopathology evaluation, recovery of the pro-inflammatory cytokines IL-β and TNF-α level with retrieval of Bcl-2 and vimentin protein levels proximate to the vehicle control groups). Due to the significant protective effect of SeNPs, it considered much better than the crude extract of Adiantum capillus in the treatment of kidney injury; however, additional studies are necessary to find the precise mechanism of their action.  相似文献   

3.
Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy.  相似文献   

4.
A bioreductive capacity of a plant, Terminalia arjuna leaf extract, was utilized for preparation of selenium nanoparticles. The leaf extract worked as good capping as well as stabilizing agent and facilitated the formation of stable colloidal nanoparticles. Resulting nanoparticles were characterized using UV–Vis spectrophotometer, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD), respectively. The colloidal solution showed the absorption maximum at 390 nm while TEM and selected area electron diffraction (SAED) indicated the formation of polydispersed, crystalline selenium nanoparticles of size raging from 10 to 80 nm. FT-IR analysis suggested the involvement of O–H, N–H, C=O, and C–O functional group of the leaf extract in particle formation while EDAX analysis indicated the presence of selenium in synthesized nanoparticles. The effect of nanoparticles on human lymphocytes treated with arsenite, As(III), has been studied. Studies on cell viability using MTT assay and DNA damage using comet assay revealed that synthesized selenium nanoparticles showed protective effect against As(III)-induced cell death and DNA damage. Chronic ingestion of arsenic infested groundwater, and prevalence of arsenicosis is a serious public health issue. The synthesized benign nanoselenium can be a promising agent to check the chronic toxicity caused due to arsenic exposure.  相似文献   

5.
近年来,纳米硒凭借其良好的导电、光热以及抗癌等特性,在纳米技术、生物医学以及环境修复等诸多领域得到广泛应用。实验选择前期筛选得到的贪铜杆菌Cupriavidus sp. SHE,文中探究了该菌株的细胞上清液、全细胞以及胞内提取物合成纳米硒的能力,并对细胞上清液合成的纳米硒进行形貌表征与官能团分析,最后选取革兰氏阳性菌假单胞菌Pseudomonas sp. PI1和革兰氏阴性菌大肠杆菌Escherichia coli BL21进行抗菌实验。结果表明,菌株Cupriavidussp.SHE的细胞上清液、全细胞以及胞内提取物均具有合成纳米硒的能力。对于菌株Cupriavidus sp. SHE细胞上清液而言,在该实验中,研究范围内其合成纳米硒的最佳条件是SeO2浓度为5 mmol/L,pH为7。透射电子显微镜结果表明合成的纳米硒颗粒主要为球形,平均直径为196nm。X射线衍射结果表明合成的纳米硒晶体类型为六方形结构。傅立叶转换红外光谱和聚丙烯酰胺凝胶电泳结果表明纳米硒表面有小分子蛋白结合,可能参与了纳米硒的合成和稳定过程。此外,抗菌实验表明菌株Cupriavidus sp. SHE细胞上清液合成的纳米硒颗粒对菌株E.coli BL21和Pseudomonas sp. PI1均无明显的抗菌活性。综上,该研究表明菌株Cupriavidus sp.SHE在细胞上清液中产生的蛋白类物质在其合成纳米硒的过程中发挥了重要作用,合成的生物纳米硒颗粒无毒且生物相容性良好,未来在生物医学等领域具有较好的应用潜力。  相似文献   

6.
Nanoparticles synthesis by bacteria and yeasts has been widely reported, however, synthesis using halophilic archaea is still in a nascent stage. This study aimed at the intracellular synthesis of selenium nanoparticles (SeNPs) by the haloarchaeon Halococcus salifodinae BK18 when grown in the presence of sodium selenite. Crystallographic characterization of SeNPs by X‐ray diffraction, Selected area electron diffraction, and transmission electron microscopy exhibited rod shaped nanoparticles with hexagonal crystal lattice, a crystallite domain size of 28 nm and an aspect ratio (length:diameter) of 13:1. Energy disruptive analysis of X‐ray analysis confirmed the presence of selenium in the nano‐preparation. The nitrate reductase enzyme assay and the inhibitor studies indicated the involvement of NADH‐dependent nitrate reductase in SeNPs synthesis and metal tolerance. The SeNPs exhibited good anti‐proliferative properties against HeLa cell lines while being non‐cytotoxic to normal cell line model HaCat, suggesting the use of these SeNPs as cancer chemotherapeutic agent. This is the first study on selenium nanoparticles synthesis by haloarchaea. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1480–1487, 2014  相似文献   

7.
目的:以植物乳杆菌胞外多糖(EPS)作为稳定剂和包覆剂,安全、简便地制备高稳定性胞外多糖-纳米硒复合物(E-SeNPs),并研究其稳定性和抗氧化活性。方法:将植物乳杆菌胞外多糖引入亚硒酸钠与抗坏血酸的反应体系中,室温合成E-SeNPs。采用透射电子显微镜(TEM)、动态光散射(DLS)、紫外可见光谱(UV-vis)和傅里叶变换红外光谱(FT-IR)等技术对E-SeNPs的尺寸、形貌、结构及稳定性进行研究。此外,通过检测E-SeNPs的还原能力、ABTS+的清除率评估其体外抗氧化活性。结果:制备了具有良好分散性、稳定性的E-SeNPs,其平均粒径为(45.17±11.9)nm,带负电荷(-31.3mV)。同时,由于包覆作用,该E-SeNPs在水溶液中可稳定存在20天。最后,相同浓度下,E-SeNPs的还原力、ABTS+清除率都明显高于EPS和硒纳米颗粒(SeNPs),表现出了良好的抗氧化活性。结论:获得了一种新型的SeNPs稳定剂和包覆剂,简便、安全地制备了高稳定性、水分散性良好且具有良好抗氧化活性的SeNPs。  相似文献   

8.
目的:以植物乳杆菌胞外多糖(EPS)作为稳定剂和包覆剂,安全、简便地制备高稳定性胞外多糖-纳米硒复合物(E-SeNPs),并研究其稳定性和抗氧化活性。方法:将植物乳杆菌胞外多糖引入亚硒酸钠与抗坏血酸的反应体系中,室温合成E-SeNPs。采用透射电子显微镜(TEM)、动态光散射(DLS)、紫外可见光谱(UV-vis)和傅里叶变换红外光谱(FT-IR)等技术对E-SeNPs的尺寸、形貌、结构及稳定性进行研究。此外,通过检测E-SeNPs的还原能力、ABTS+的清除率评估其体外抗氧化活性。结果:制备了具有良好分散性、稳定性的E-SeNPs,其平均粒径为(45.17±11.9)nm,带负电荷(-31.3mV)。同时,由于包覆作用,该E-SeNPs在水溶液中可稳定存在20天。最后,相同浓度下,E-SeNPs的还原力、ABTS+清除率都明显高于EPS和硒纳米颗粒(SeNPs),表现出了良好的抗氧化活性。结论:获得了一种新型的SeNPs稳定剂和包覆剂,简便、安全地制备了高稳定性、水分散性良好且具有良好抗氧化活性的SeNPs。  相似文献   

9.
This study investigated the antimicrobial and antioxidant activity of three Spirulina extracts (methanol, acetone, and hexane) and the biological selenium nanoparticles (SeNPs) fabricated by Bacillus subtilis AL43. The results showed that Spirulina extracts exhibited antimicrobial activity against tested pathogens. Besides, Spirulina extracts significantly scavenged ABTS and DPPH radicals in a dose-dependent manner. The methanolic extract had higher total phenolic content, antimicrobial activity, and antioxidant activity than other extracts. The selenium nanoparticles were synthesized by Bacillus subtilis AL43 under aerobic conditions and were characterized as spherical, crystalline with a size of 65.23 nm and a net negative charge of ?22.7. We evidenced that SeNPs possess considerable antimicrobial activity against three gram-positive, three gram-negative bacteria, and three strains from both Candida sp. and Aspergillus sp. Moreover, SeNPs were able to scavenge ABTS and DPPH radicals in a dose-dependent manner. An association was found between the total phenolic content of Spirulina and SeNPs and their biological activities. Our results indicate that Spirulina and SeNPs with significant antimicrobial and antioxidant activities seem to be successful candidates for safe and reliable medical applications.  相似文献   

10.
In the present study, sulphated polysaccharide Ulvan from Ulva lactuca was used for the synthesis of biogenic Selenium Nanoparticles (SeNPs) conjugate and Mouth rinse was prepared using this conjugate. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and characterized using Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM) and X-ray diffraction (XRD). TEM showed that the average size of the nanoparticle was 85 nm and spherical in shape. Furthermore, nanoparticle conjugates were evaluated for cell viability using MTT assay 3T3-L1 cell line and at 30 µl/ml showed 34% cell viability. The antimicrobial activity of SeNPs mouth rinse was tested against oral pathogens such as Streptococcus mutans, Staphylococcus aureus, Lactobacillus, and Candida albicans and it was effective against all tested microorganism at the concentration of 100 µl/ml. The present study has shown that Ulvan from algal biomass can be a safe and effective source for the development of oral nano-antimicrobial agents.  相似文献   

11.
Tailored nanoparticles offer a novel approach to fight antibiotic‐resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram‐negative Stenotrophomonas maltophilia [Sm‐SeNPs(?)] and Gram‐positive Bacillus mycoides [Bm‐SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm‐SeNPs(?) and Bm‐SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch‐SeNPs). Dendritic cells and fibroblasts exposed to Sm‐SeNPs(?), Bm‐SeNPs(+) and Ch‐SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro‐inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.  相似文献   

12.
The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was −20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.  相似文献   

13.
Silver nanoparticles (AgNPs) are gaining considerable importance due to their attractive physicochemical properties for many applications. In the present study, (Ag NPs) were synthesized by the reduction of aqueous solutions of silver nitrate (AgNO3) with powder and solvent extracts of Padina pavonia (brown algae). The obtained nanoparticles exhibited high stability, rapid formation of the biogenic process (2 min -3 h), small size (49.58–86.37 nm) (the diameter of formed nanoparticles was measured by TEM and DLS) and variable shapes (spherical, triangular, rectangle, polyhedral and hexagonal). Preliminary characterization of nanoparticles was monitored by using UV–visible spectroscopy (UV–vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and finally by Fourier Transform Infrared spectroscopy (FTIR). The ratios of converted Ag NPs were recorded as 88.5; 86.2 and 90.5% in case of P. pavonia powder. extract and chloroform extract, respectively.  相似文献   

14.
A biogenic route was adopted towards the synthesis of gold nanoparticles using the extract of a novel strain, Talaromyces flavus. Reduction of chloroauric acid by the fungal extract resulted in the production of gold nanoparticle, which was further confirmed by the concordant results obtained from UV–visible spectroscopy, energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) analysis. Morphology and the crystal nature of the synthesized nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and selected area electron diffraction (SAED). A direct correlation was observed between nanoparticle formation and the concentration of reducing agent present in the fungal extract. The time-dependent kinetic study revealed that the bioreduction process follows an autocatalytic reaction. Crystalline, irregular, and mostly flower-shaped gold nanoparticles with a mean hydrodynamic radius of 38.54?±?10.34 nm were obtained. pH played a significant role on production of mono-dispersed nanoparticle. FTIR analysis partially deciphered the involvement of –NH2, ?SH, and –CO groups as the probable molecules in the bio-reduction and stabilization process. Compared to the conventional methods, a time-resolved, green, and economically viable method for floral-shaped nanoparticle synthesis was developed.  相似文献   

15.
Silver nanoparticles (AgNPs) have gained great interest in nanotechnology, biotechnology and medicine. The green synthesis of nanoparticles has received an increasing attention because of it’s maximize efficiency and minimize health and environmental hazards as compared to other conventional chemical synthesis. In this study, we reported biosynthesis of AgNPs by aqueous Annona squamosa L. leaf extract and its characterization by UV-visible spectroscopy (UV–vis), Field emission gun scanning electron microscopy (FEG-SEM), X-ray energy dispersive spectroscopy (EDX), Transmission electron microscopy (TEM), Selected-area electron diffraction (SAED) and Fourier transform infra-red spectroscopy (FTIR). The results indicated that AgNPs formed were spherical in shape with size ranging from 14 to 40 nm with an average diameter 28.47 nm. Furthermore, it was observed that the AgNPs exhibited an antibacterial activity against different Gram positive and Gram negative microorganisms. Our report confirmed that the ALE is a very good eco-friendly and nontoxic bioreductant for the synthesis of AgNPs and opens up further opportunities for fabrication of antibacterial drugs, medical devices and wound dressings.  相似文献   

16.
The need for more effective antimicrobial agent and propitious application of nanotechnology in therapeutics and diagnostics has prompted the research on ecofriendly synthesis of silver nanoparticles. The objective of present study was to investigate the antibacterial and antifungal activity of biologically synthesized silver nanoparticles. The silver nanoparticles were synthesized by extracellular method, using soil bacteria Kocuria rosea. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM) and fourier transformation infrared spectroscopy (FTIR). On the basis of TEM analysis, the synthesized nanoparticles were found to be spherical with an average size of 30–50 nm. The biologically synthesized silver nanoparticles showed significant antimicrobial activity against pathogens.  相似文献   

17.
Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications.  相似文献   

18.
Biogenic metal/metalloid nanoparticles of microbial origin retain a functional biomolecular capping layer that confers structural stability. Little is known about the composition of such capping material. In this study, selenium nanoparticles (SeNPs) synthesized by five different bacterial strains underwent comparative analysis with newly proposed protocols for quantifying the concentration of carbohydrates, proteins and lipids present in capping layers. SeNPs were therefore treated with two different detergents to remove portions of the surrounding caps in order to assess the resulting effects. Capping material quantification was carried out along with the measure of parameters such as hydrodynamic diameter, polydispersity and surface charge. SeNPs from the five strains showed differences in their distinct biomolecule ratios. On the other hand, structural changes in the nanoparticles induced by detergents did not correlate with the amounts of capping matrix removed. Thus, the present investigation suggests a hypothesis to describe capping layer composition of the bacterial SeNPs: some biomolecules are bound more strongly than others to the core metalloid matrix, so that the diverse capping layer components differentially contribute to the overall structural characteristics of the nanoparticles. Furthermore, the application of the approach here in combining quantification of cap-associated biomolecules with the measurement of structural integrity-related parameters can give the biogenic nanomaterial field useful information to construct a data bank on biogenically synthesized nanostructures.  相似文献   

19.
Due to the increasing popularity of using plant extract in the synthesis of nanoparticles, this study presented the synthesis of platinum nanoparticles using Fumariae herba extract. The formation of platinum nanoparticles was confirmed by UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with EDS profile. Transmission electron micrograph presented the hexagonal and pentagonal shape of the synthesized nanoparticles sized about 30 nm. Moreover, platinum nanoparticles presented good catalytic properties in the reduction of methylene blue and crystal violet.  相似文献   

20.
A proper vaccination against avian influenza viruses in chicken can significantly reduce the risk of human infection. Egypt has the highest number of recorded humans highly pathogenic avian influenza (HPAI)-H5N1 infections worldwide despite the widespread use of homologous vaccines in poultry. Enhancing H5N1 vaccine efficacy is ultimately required to better control HPAI-H5N1. The aim of this study is to boost chicken immunity by combined with inactivated HPAI-H5N1 with selenium nanoparticles (SeNPs). The chickens groups 1–3 were fed diets supplemented with SeNPs concentrations (0.25, 0.5, and 1 mg/kg) for 3 weeks and then vaccinated (inactivated HPAI-H5N1). while groups 4,5 and 6 were fed with SeNPs free diets and administered with 0.5 ml of the vaccine combined with 0.02, 0.06, and 0.1 mg/dose of SeNPs and then all groups were challenged with homologous virus 3 weeks post-vaccination (WPV). Group 7, 8 were used as control positive and negative respectively. At 4, 5, and 6 WPV, antibody titer was considerably higher in the group fed a meal supplemented with 1 mg SeNPs/kg. In contrast, both methods of SeNPs supplementation significantly increased the Interleukin 2 (IL2), Interleukin 6 (IL6), and Interferon γ (IFNγ) expressions in the blood cells in a dose-dependent manner, with a higher expression observed in the group that was vaccinated with 0.1 mg/dose. After the challenge, all groups that received SeNPs via diet or vaccines dose showed significant reduction in viral shedding and milder inflammation in lung, trachea, spleen, and liver in addition to higher expression of IL2, IL6, and IFNγ, with the highest expression observed in the group that was vaccinated with 0.1 mg/dose compared the plain vaccinated group. The groups of 1 mg SeNPs/kg and combined vaccinated with 0.1 mg/dose showed the best vaccine efficacy. However, the group vaccinated with 0.1 mg/dose showed the earliest reduction in viral shedding. Overall, SeNPs supplementation in the diet and the administration of the vaccine formula with SeNPs could enhance vaccine efficacy and provide better protection against HPAI-H5N1 in chickens by enhancing cellular immunity and reducing inflammation. We recommend using SeNPs as a vaccine combination or feeding with diet to increase the immunity and vaccine efficacy against H5N1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号