首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although plasma norepinephrine (NE) increases and hepatocellular function is depressed during early sepsis, it is unknown whether gut is a significant source of NE and, if so, whether gut-derived NE helps produce hepatocellular dysfunction. We subjected rats to sepsis by cecal ligation and puncture (CLP), and 2 h later (i.e., early sepsis) portal and systemic blood samples were collected and plasma levels of NE were assayed. Other rats were enterectomized before CLP. Hepatocellular function was assessed with an in vivo indocyanine green (ICG) clearance technique, systemic levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined, and the effect of NE on hepatic ICG clearance capacity was assessed in an isolated, perfused liver preparation. Portal levels of NE were significantly higher than systemic levels at 2 h after CLP. Prior enterectomy reduced NE levels in septic animals. Thus gut appears to be the major source of NE release during sepsis. Enterectomy before sepsis also attenuated hepatocellular dysfunction and downregulated TNF-alpha, IL-1beta, and IL-6. Perfusion of the isolated livers with 20 nM NE (similar to that observed in sepsis) significantly reduced ICG clearance capacity. These results suggest that gut-derived NE plays a significant role in hepatocellular dysfunction and upregulating inflammatory cytokines. Modulation of NE release and/or hepatic responsiveness to NE should provide a novel approach for maintaining hepatocellular function in sepsis.  相似文献   

2.
Although previous studies have demonstrated that plasma levels of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) increase during early sepsis, the precise mechanism responsible for its upregulation remains to be elucidated. Since recent studies have shown that the gut is an important source of norepinephrine (NE) release during early sepsis and enterectomy prior to the onset of sepsis attenuates TNF-alpha production, we hypothesized that gut-derived NE plays a major role in upregulating TNF-alpha via the activation of alpha(2)-adrenoceptors on Kupffer cells. To confirm that NE increases TNF-alpha synthesis and release, Kupffer cells were isolated from normal rats and incubated with NE (20 or 50 nM) or another alpha(2)-adrenergic agonist clonidine (50 nM) without addition of Escherichia coli endotoxin. Supernatant levels of TNF-alpha were then measured. In additional animals, intraportal infusion of NE (20 microM) with or without the specific alpha(2)-adrenergic antagonist yohimbine (1 mM) at a rate of 13 microl/min was carried out for 2 h. Plasma and Kupffer cell levels of TNF-alpha were assayed thereafter. Moreover, the effects of NE and yohimbine on TNF-alpha production was further examined using an isolated perfused liver preparation. The results indicate that both NE and clonidine increased TNF-alpha release by approximately 4-7-fold in the isolated cultured Kupffer cells. Similarly, intraportal infusion of NE in vivo or in isolated livers increased TNF-alpha synthesis and release which was inhibited by co-infusion of yohimbine. Furthermore, the increased cellular levels of TNF-alpha in Kupffer cells after in vivo administration of NE was also blocked by yohimbine. These results, taken together, suggest that gut-derived NE upregulates TNF-alpha production in Kupffer cells through an alpha(2)-adrenergic pathway, which appears to be responsible at least in part for the increased levels of circulating TNF-alpha observed during early sepsis as well as other pathophysiologic conditions such as trauma, hemorrhagic shock, or gut ischemia/reperfusion.  相似文献   

3.
Our previous studies have shown that norepinephrine (NE) upregulates proinflammatory cytokines by activating alpha(2)-adrenoceptor. Therefore, modulation of the sympathetic nervous system represents a novel treatment for sepsis. We have also shown that a novel stomach-derived peptide, ghrelin, is downregulated in sepsis and that its intravenous administration decreases proinflammatory cytokines and mitigates organ injury. However, it remains unknown whether ghrelin inhibits sympathetic activity through central ghrelin receptors [i.e., growth hormone secretagogue receptor 1a (GHSR-la)] in sepsis. To study this, sepsis was induced in male rats by cecal ligation and puncture (CLP). Ghrelin was administered through intravenous or intracerebroventricular injection 30 min before CLP. Our results showed that intravenous administration of ghrelin significantly reduced the elevated NE and TNF-alpha levels at 2 h after CLP. NE administration partially blocked the inhibitory effect of ghrelin on TNF-alpha in sepsis. GHSR-la inhibition by the administration of a GHSR-la antagonist, [d-Arg(1),d-Phe(5), d-Trp(7,9),Leu(11)]substance P, significantly increased both NE and TNF-alpha levels even in normal animals. Markedly elevated circulating levels of NE 2 h after CLP were also significantly decreased by intracerebroventricular administration of ghrelin. Ghrelin's inhibitory effect on NE release was completely blocked by intracerebroventricular injection of the GHSR-1a antagonist or a neuropeptide Y (NPY)/Y(1) receptor antagonist. However, ghrelin's downregulatory effect on TNF-alpha release was only partially diminished by these agents. Thus ghrelin has sympathoinhibitory properties that are mediated by central ghrelin receptors involving a NPY/Y1 receptor-dependent pathway. Ghrelin's inhibitory effect on TNF-alpha production in sepsis is partially because of its modulation of the overstimulated sympathetic nerve activation.  相似文献   

4.
Studies have shown that increased gut-derived norepinephrine (NE) release plays an important role in producing hepatocellular dysfunction at the early stage of sepsis. Although the gut has been demonstrated to be the major source of NE in sepsis, it remains unknown whether the increased NE is associated with up-regulation of intestinal NE biosynthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). To determine this, adult male rats were subjected to sepsis by cecal ligation and puncture (CLP) followed by fluid resuscitation. Small intestinal samples were harvested at 2 h (i.e., early sepsis) or 20 h (late sepsis) after CLP or sham-operation. Protein levels of TH and DBH were determined by Western blot analysis and immunohistochemistry. Their gene expression was assessed by RT-PCR technique. The results indicate that intestinal TH protein levels increased significantly at 2 and 20 h after CLP, while DBH was not altered under such conditions. Immunohistochemical examination shows that both TH and DBH were located in intestinal sympathetic nerve fibers and TH staining was markedly increased in septic animals. TH gene expression increased significantly at 2 h but not at 20 h after CLP, while DBH gene expression was not altered in sepsis. Thus, the increased TH gene and protein expression appears to be responsible for the increased gut-derived NE in sepsis.  相似文献   

5.
Previous studies have shown that the gut is a major source of norepinephrine (NE) released in early sepsis and that gut-derived NE plays an important role in up-regulating TNF-alpha expression in Kupffer cells (KC) via an alpha(2)-adrenoceptor (alpha(2)-AR) pathway. However, it remains unknown whether NE affects the release of other inflammatory cytokines such as IL-1beta and IL-10 and, if so, whether alpha(2)-AR is also involved in such a process. To study this, a branch of the portal vein in normal adult male rats was cannulated under anesthesia. NE (20 muM in ascorbate saline), NE plus yohimbine (YHB, a specific alpha(2)-AR antagonist, 1 mM) or vehicle (0.1% ascorbate saline) was infused at a rate of 13 mul/min for 2 h. The above rate of NE infusion was used to increase the portal level of NE to approximately 20 nM, similar to that observed in sepsis. Blood samples were then collected and serum levels of IL-1beta and IL-10 were measured. In addition, the KC was isolated from normal rats and stimulated with either NE (20 nM) or NE plus YHB (1 muM). The gene expression of IL-1beta and IL-10 in KC and their supernatant levels were assessed. The results indicate that serum levels of IL-1beta and IL-10 increased significantly after the intraportal infusion of NE. Co-administration of NE and YHB, however, significantly attenuated IL-1beta and IL-10 production. Similarly, IL-1beta and IL-10 gene expression and release from KC were up-regulated by NE stimulation, whereas YHB attenuated both cytokines. Thus, gut-derived NE up-regulates IL-1beta and IL-10 expression and release in the liver through an alpha(2)-AR pathway. Since adenylate cyclase activator forskolin prevents the increase in NE-induced IL-1beta and IL-10, the up-regulatory effect of NE on those cytokines appears to be mediated, at least in part, by inhibition of adenylate cyclase and reduction in intracellular cyclic AMP levels.  相似文献   

6.
7.
Wang PY  Yang J  Dong LW  Wang XH  Tang CS  Liu NK 《生理学报》1999,51(3):338-342
为观察败血症时心肌肌浆网(SR)和核被膜(NE)的ryanodine受体的变化,采用结扎及穿刺盲肠(CLP)制作败血症动物模型,用密度梯度离心分离SR和NE,用放射配体结合法研究ryanodine受体的特征。结果表明,大鼠早期败血症(CLP后9h)时,SR的ryanodine受体的最大结合(Bmax)增加23%,NE的ryanodine受体的Bmax则增加1倍,二者比值降低39%(P<001);在晚期败血症(CLP后18h)时,SRryanodine受体的Bmax降低了38%,NE的ryanodine受体的Bmax增加16倍,二者比值降低76%;SR和NEryanodine受体的离解常数无显著改变。败血症时,SRryanodine受体早期上调,晚期下调,而NEryanodine受体均上调,这些变化可能与休克时相有关。  相似文献   

8.
Using a nonstressed chronically catheterized rat model in which the common bile duct was cannulated, we studied endotoxin-induced alterations in hepatic function by measuring changes in the maximal steady-state biliary excretion rate of the anionic dye indocyanine green (ICG). Biliary excretion of ICG was calculated from direct measurements of biliary ICG concentrations and the bile flow rate during a continuous vascular infusion of ICG. Despite significant elevations in mean peak serum tumor necrosis factor-alpha (TNF-alpha) concentrations (90.9 +/- 16.2 ng/ml), there was no effect on mean rates of bile flow or biliary ICG clearance after administration of 100 microg/kg endotoxin at 6 or 24 h. Significant differences from mean baseline rates of bile flow and biliary ICG excretion did occur after administration of 1,000 microg/kg endotoxin (mean peak TNF-alpha 129.6 +/- 24.4 ng/ml). Furthermore, when rats were treated with up to 16 microg/kg of recombinant TNF-alpha, there was no change in mean rates of bile flow or ICG biliary clearance compared with baseline values. These data suggest that the complex regulation of biliary excretion is not mediated solely by TNF-alpha.  相似文献   

9.
The role of alpha- and beta-adrenergic receptor subtypes in mediating the actions of catecholamines on hepatic glucose production (HGP) was determined in sixteen 18-h-fasted conscious dogs maintained on a pancreatic clamp with basal insulin and glucagon. The experiment consisted of a 100-min equilibration, a 40-min basal, and two 90-min test periods in groups 1 and 2, plus a 60-min third test period in groups 3 and 4. In group 1 [alpha-blockade with norepinephrine (alpha-blo+NE)], phentolamine (2 microg x kg(-1) x min(-1)) was infused portally during both test periods, and NE (50 ng x kg(-1) x min(-1)) was infused portally at the start of test period 2. In group 2, beta-blockade with epinephrine (beta-blo+EPI), propranolol (1 microg x kg(-1) x min(-1)) was infused portally during both test periods, and EPI (8 ng x kg(-1) x min(-1)) was infused portally during test period 2. In group 3 (alpha(1)-blo+NE), prazosin (4 microg x kg(-1) x min(-1)) was infused portally during all test periods, and NE (50 and 100 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In group 4 (beta(2)-blo+EPI), butoxamine (40 microg x kg(-1) x min(-1)) was infused portally during all test periods, and EPI (8 and 40 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In the presence of alpha- or alpha(1)-adrenergic blockade, a selective rise in hepatic sinusoidal NE failed to increase net hepatic glucose output (NHGO). In a previous study, the same rate of portal NE infusion had increased NHGO by 1.6 +/- 0.3 mg x kg(-1) x min(-1). In the presence of beta- or beta(2)-adrenergic blockade, the selective rise in hepatic sinusoidal EPI caused by EPI infusion at 8 ng x kg(-1) x min(-1) also failed to increase NHGO. In a previous study, the same rate of EPI infusion had increased NHGO by 1.6 +/- 0.4 mg x kg(-1) x min(-1). In conclusion, in the conscious dog, the direct effects of NE and EPI on HGP are predominantly mediated through alpha(1)- and beta(2)-adrenergic receptors, respectively.  相似文献   

10.

Background

Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-α production in Kupffer cells (KCs) through the activation of the α2-AR. It is important to know which of the three α2-AR subtypes (i.e., α2A, α2B or α2C) is responsible for the upregulation of TNF-α production. The aim of this study was to determine the contribution of α2A-AR in this process.

Methodology/Principal Findings

Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of α2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific α2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of α2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the α2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-α in cultured KCs, which was specifically inhibited by the α2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-α gene expression in KCs and plasma TNF-α which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-α release via the α2A-AR in vitro and in vivo. This potentiation of TNF-α release by NE was mediated through the α2A-AR coupled Gαi protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-α, prevented multiple organ injury and significantly improved survival from 45% to 75%.

Conclusions/Significance

Our novel finding is that hyperresponsiveness to α2-AR stimulation observed in sepsis is primarily due to an increase in α2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the α2A-AR antagonist as a new therapy for sepsis.  相似文献   

11.
Although studies have shown that the gut is capable of being a cytokine-producing organ and that the proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 are upregulated following the onset of sepsis, it remains unknown whether the gut is indeed the major source of the increased cytokine production under such conditions. To determine this, male rats were subjected to cecal ligation and puncture (CLP, a model of polymicrobial sepsis) or sham operation followed by the administration of normal saline solution subcutaneously (i.e., fluid resuscitation). Systemic and portal blood samples were taken simultaneously at 2, 5, 10, or 20 h after CLP or sham operation. Plasma levels of TNF-alpha, IL-1beta, and IL-6 were determined using an enzyme-linked immunosorbent assay. In additional animals, the small intestine was harvested at 10 h after CLP or sham operation and examined for TNF-alpha, IL-1beta, and IL-6 gene expression by RT-PCR. The results indicate that the levels of TNF-alpha, IL-1beta, and IL-6 in both systemic and portal blood samples were significantly elevated during sepsis with the exception that the increase in IL-1beta was not significant at 2 h after CLP. However, there were no significant differences in the levels of those proinflammatory cytokines between systemic and portal blood at any points after the onset of sepsis. Moreover, there were no significant alterations in the proinflammatory cytokine gene expression in the small intestine at 10 h after CLP. Since the levels of TNF-alpha, IL-1beta, and IL-6 were not significantly increased in portal blood as compared to systemic blood and since there was no upregulation of gene expression for these cytokines, it appears that organs other than the gut are responsible for the upregulated proinflammatory cytokines during polymicrobial sepsis.  相似文献   

12.
In cutaneous veins of the dog, cooling augments the response to sympathetic nerve stimulation and exogenous norepinephrine (NE). The postjunctional alpha adrenoceptors in this blood vessel belong to both the alpha 1 and alpha 2 subtypes. Cooling augments alpha 2-adrenergic responses (presumably because of an increased receptor affinity), but depresses alpha 1-adrenergic responses (presumably because of a direct inhibitory effect on the contractile process). When agonists of high efficacy such as NE or phenylephrine are used, an alpha 1-adrenoceptor reserve is present that buffers the response from the inhibitory effect of cooling. This allows the potentiating effect of cold on the alpha 2-adrenergic component of the response to catecholamines to predominate, and the contractile response to exogenous NE and sympathetic nerve stimulation is augmented. By contrast, in deep veins of the limb, cold reduces the contractions evoked by alpha 1- and alpha 2-adrenergic activation. This can be explained best by the absence of a receptor reserve for alpha 1-adrenergic agonists of high efficacy, combined with a reduced density of postjunctional alpha 2 adrenoceptors.  相似文献   

13.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

14.
Role of C5a in multiorgan failure during sepsis   总被引:18,自引:0,他引:18  
In humans with sepsis, the onset of multiorgan failure (MOF), especially involving liver, lungs, and kidneys, is a well known complication that is associated with a high mortality rate. Our previous studies with the cecal ligation/puncture (CLP) model of sepsis in rats have revealed a C5a-induced defect in the respiratory burst of neutrophils. In the current CLP studies, MOF occurred during the first 48 h with development of liver dysfunction and pulmonary dysfunction (falling arterial partial pressure of O(2), rising partial pressure of CO(2)). In this model an early respiratory alkalosis developed, followed by a metabolic acidosis with increased levels of blood lactate. During these events, blood neutrophils lost their chemotactic responsiveness both to C5a and to the bacterial chemotaxin, fMLP. Neutrophil dysfunction was associated with virtually complete loss in binding of C5a, but binding of fMLP remained normal. If CLP animals were treated with anti-C5a, indicators of MOF and lactate acidosis were greatly attenuated. Under the same conditions, C5a binding to blood neutrophils remained intact; in tandem, in vitro chemotactic responses to C5a and fMLP were retained. These data suggest that, in the CLP model of sepsis, treatment with anti-C5a prevents development of MOF and the accompanying onset of blood neutrophil dysfunction. This may explain the protective effects of anti-C5a in the CLP model of sepsis.  相似文献   

15.
Polymicrobial sepsis induces suppression of macrophage function as determined by a reduction of pro-inflammatory cytokine production upon re-exposure to lipopolysaccharide (LPS) in vitro. We examined whether macrophages were refractory to only LPS challenge or if they were immunoparalyzed and unable to respond to other stimuli such as lipoteichoic acid (LTA) or zymosan (ZYM). This study evaluated the capacity of peritoneal macrophages to produce pro-inflammatory and anti-inflammatory cytokines as well as chemokines following mild or severe sepsis induced by cecal ligation and puncture (CLP). Peritoneal macrophages were isolated 29 h after CLP and challenged with different stimuli. LPS was a more potent stimulus for cytokine induction than LTA or ZYM in both mild and severe sepsis. In mild sepsis, the macrophage cytokine response to LPS was selective and less refractory than in severe sepsis. While production of IL-6 and KC was reduced, secretion of TNF-alpha and MIP-1alpha was enhanced in those cells isolated from mice with mild sepsis. Production of IL-10 and the IL-1 receptor antagonist , MIP-2, and MCP-1 in response to LPS stimulation was equivalent to the amount produced by naive macrophages. Our results indicate that macrophages are not immunoparalyzed during sepsis and may still be induced to secrete some inflammatory mediators.  相似文献   

16.
The present study was designed to investigate the role of nitric oxide (NO) in modulating the adrenergic vasoconstrictor response of the renal medullary circulation. In anesthetized rats, intravenous infusion of norepinephrine (NE) at a subpressor dose of 0.1 microgram. kg(-1). min(-1) did not alter renal cortical (CBF) and medullary (MBF) blood flows measured by laser-Doppler flowmetry nor medullary tissue PO(2) (P(m)O(2)) as measured by a polarographic microelectrode. In the presence of the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME) in the renal medulla, intravenous infusion of NE significantly reduced MBF by 30% and P(m)O(2) by 37%. With the use of an in vivo microdialysis-oxyhemoglobin NO-trapping technique, we found that intravenous infusion of NE increased interstitial NO concentrations by 43% in the renal medulla. NE-stimulated elevations of tissue NO were completely blocked either by renal medullary interstitial infusion of L-NAME or the alpha(2)-antagonist rauwolscine (30 microgram. kg(-1). min(-1)). Concurrently, intavenous infusion of NE resulted in a significant reduction of MBF in the presence of rauwolscine. The alpha(1)-antagonist prazosin (10 microgram. kg(-1). min(-1) renal medullary interstitial infusion) did not reduce the NE-induced increase in NO production, and NE increased MBF in the presence of prazosin. Microdissection and RT-PCR analyses demonstrated that the vasa recta expressed the mRNA of alpha(2B)-adrenergic receptors and that medullary thick ascending limb and collecting duct expressed the mRNA of both alpha(2A)- and alpha(2B)-adrenergic receptors. These subtypes of alpha(2)-adrenergic receptors may mediate NE-induced NO production in the renal medulla. We conclude that the increase in medullary NO production associated with the activation of alpha(2)-adrenergic receptors counteracts the vasoconstrictor effects of NE in the renal medulla and may play an important role in maintaining a constancy of MBF and medullary oxygenation.  相似文献   

17.
The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is anti-inflammatory in a cell-based system and in animal models of endotoxemia. We have shown that PPAR-gamma gene expression is downregulated in macrophages after lipopolysaccharide (LPS) stimulation. However, it remains unknown whether hepatic PPAR-gamma is altered in sepsis and, if so, whether LPS directly downregulates PPAR-gamma. To study this, rats were subjected to sepsis by cecal ligation and puncture (CLP). Hepatic tissues were harvested at 5, 10, and 20 h after CLP. PPAR-gamma gene expression and protein levels were determined by RT-PCR and Western blot analysis, respectively. The results showed that PPAR-gamma gene expression decreased at 10 and 20 h and that its proteins levels were reduced at 20 h after CLP. PPAR-gamma levels were also decreased in animals that were administered LPS. To determine the direct effects of LPS on PPAR-gamma downregulation, LPS binding agent polymyxin B (PMB) was administered intramuscularly after CLP. The administration of PMB significantly reduced plasma levels of endotoxin, but it did not prevent the downregulation of PPAR-gamma expression. We found that circulating levels of TNF-alpha still remained significantly elevated in PMB-treated septic animals. We, therefore, hypothesize that the decrease of PPAR-gamma expression is TNF-alpha dependent. To investigate this, Kupffer cells (KCs) were isolated from normal rats and stimulated with LPS or TNF-alpha. TNF-alpha significantly attenuated PPAR-gamma gene expression in KCs. Although LPS decreased PPAR-gamma in KCs, the downregulatory effect of LPS was blocked by the addition of TNF-alpha-neutralizing antibodies. Furthermore, the administration of TNF-alpha-neutralizing antibodies to animals before the onset of sepsis prevented the downregulation of PPAR-gamma in sepsis. We, therefore, conclude that LPS downregulates PPAR-gamma expression during sepsis via an increase in TNF-alpha release.  相似文献   

18.
Studies have indicated that gammadelta T lymphocytes play an important role in the regulation of immune function and the clearance of intracellular pathogens. We have recently reported that intraepithelial lymphocytes (IEL), which are rich in gammadelta T cells, within the small intestine illustrated a significant increase in apoptosis and immune dysfunction in mice subjected to sepsis. However, the contribution of gammadelta T cells to the host response to polymicrobial sepsis remains unclear. In this study, we initially observed that after sepsis induced by cecal ligation and puncture (CLP), there was an increase in small intestinal IEL CD8+gammadelta+ T cells in control gammadelta+/+ mice. Importantly, we subsequently found an increased early mortality in mice lacking gammadelta T cells (gammadelta-/- mice) after sepsis. This was associated with decreases in plasma TNF-alpha, IL-6, and IL-12 levels in gammadelta-/- mice compared with gammadelta+/+ mice after sepsis. In addition, even though in vitro LPS-stimulated peritoneal macrophages showed a reduction in IL-6 and IL-12 release after CLP, these cytokines were less suppressed in macrophages isolated from gammadelta-/- mice. Alternatively, IL-10 release was not different between septic gammadelta+/+ and gammadelta-/- mice. Whereas T helper (Th)1 cytokine release by anti-CD3-stimulated splenocytes was significantly depressed in septic gammadelta+/+ mice, there was no such depression in gammadelta-/- mice. However, gammadelta T cell deficiency had no effect on Th2 cytokine release. These findings suggest that gammadelta T cells may play a critical role in regulating the host immune response and survival to sepsis, in part by alteration of the level of IEL CD8+gammadelta+ T cells and through the development of the Th1 response.  相似文献   

19.
20.
IL-6 is known to be an important pro- and anti-inflammatory cytokine, which is up-regulated during sepsis. Our previous work has suggested a role for IL-6 in the up-regulation of C5aR in sepsis. We reported earlier that interception of C5a or C5aR results in improved outcomes in experimental sepsis. Using the cecal ligation/puncture (CLP) model in mice, we now demonstrate that treatment with anti-IL-6 Ab (anti-IL-6) results in significantly improved survival, dependent on the amount of Ab infused. CLP animals showed significantly increased binding of 125I-labeled anti-C5aR to organs when compared to either control mice at 0 h or CLP animals infused with normal rabbit 125I-labeled IgG. Binding of 125I-labeled anti-C5aR to lung, liver, kidney, and heart was significantly decreased in anti-IL-6-treated animals 6 h after CLP. RT-PCR experiments with mRNA isolated from various organs obtained 3, 6, and 12 h after CLP demonstrated increased C5aR mRNA expression during the onset of sepsis, which was greatly suppressed in CLP mice treated with anti-IL-6. These data suggest that IL-6 plays an important role in the increased expression of C5aR in lung, liver, kidney, and heart during the development of sepsis in mice and that interception of IL-6 leads to reduced expression of C5aR and improved survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号