首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Locus coeruleus (LC) neurons in a rat brain slice preparation were superfused with a Mg2+-free and bicuculline-containing external medium. Under these conditions, glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) were recorded by means of the whole-cell patch-clamp method. ATP, as well as its structural analogue 2-methylthio ATP (2-MeSATP), both caused transient inward currents, which were outlasted by an increase in the frequency but not the amplitude of the sEPSCs. PPADS, but not suramin or reactive blue 2 counteracted both effects of 2-MeSATP. By contrast, α,β-methylene ATP (α,β-meATP), UTP and BzATP did not cause an inward current response. Of these latter agonists, only BzATP slightly facilitated the sEPSC amplitude and strongly potentiated its frequency. PPADS and Brilliant Blue G, as well as fluorocitric acid and aminoadipic acid prevented the activity of BzATP. Furthermore, BzATP caused a similar facilitation of the miniature (m)EPSC (recorded in the presence of tetrodotoxin) and sEPSC frequencies (recorded in its absence). Eventually, capsaicin augmented the frequency of the sEPSCs in a capsazepine-, but not PPADS-antagonizable, manner. In conclusion, the stimulation of astrocytic P2X7 receptors appears to lead to the outflow of a signalling molecule, which presynaptically increases the spontaneous release of glutamate onto LC neurons from their afferent fibre tracts. It is suggested, that the two algogenic compounds ATP and capsaicin utilise separate receptor systems to potentiate the release of glutamate and in consequence to increase the excitability of LC neurons.  相似文献   

2.
Sensory input from peripheral nerves to the dorsal horn of the spinal cord is mediated by a variety of agents released by the central terminals of dorsal root ganglion (DRG) neurons. These include, but are not limited to, amino acids, especially glutamate, peptides and purines. The unraveling of the mechanisms of synaptic transmission by central terminals of DRG neurons has to take into account various ways in which the message from the periphery can be modulated at the level of the first central synapse. These include postsynaptic and presynaptic mechanisms. Homomeric and heteromeric complexes of receptor subunits for the different transmitters released by DRG neurons and interneurons, clustered at the postsynaptic site of central synapses, can be expressed in different combinations and their rate of insertion into the postsynaptic membrane is activity-regulated. Inhibitory mechanisms are an important part of central modulation, especially via presynaptic inhibition, currently believed to involve GABA released by inhibitory intrinsic neurons. Recent work has established the occurrence of another way by which sensory input can be modulated, i.e. the expression of presynaptic ionotropic and metabotropic receptors in central terminals of DRG neurons. Microscopic evidence for the expression, in these terminals, of various subunits of ionotropic glutamate receptors documents the selective expression of glutamate receptors in functionally different DRG afferents. Electrophysiological and pharmacological data suggest that activation of presynaptic ionotropic glutamate receptors in central terminals of DRG neurons may result in inhibition of release of glutamate by the same terminals. Glutamate activating presynaptic receptors may spill over from the same or adjacent synapses, or may be released by processes of astroglial cells surrounding synaptic terminals. The wide expression of presynaptic ionotropic glutamate receptors, especially in superficial laminae of the dorsal horn, where Adelta- and C fibers terminate, provides an additional or alternative mechanism, besides GABA-mediated presynaptic inhibition, for the modulation of glutamate release by these fibers. Since, however, presynaptic ionotropic glutamate receptors are also expressed in terminals of GABAergic intrinsic interneurons, a decrease of GABA release resulting from activation of these receptors in the same laminae, may also play a role in central sensitization and hyperalgesia.  相似文献   

3.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:3,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

4.
C Mulle  C Léna  J P Changeux 《Neuron》1992,8(5):937-945
Nicotinic acetylcholine receptor (nAChR) responses of rat medial habenular neurons are potentiated up to 3.5-fold by increasing the concentration of external Ca2+ in the millimolar range. This effect, independent of voltage, is probably due to the binding of Ca2+ to an external site. External Ca2+ decreases nAChR single-channel conductance at negative but not positive potentials, and it markedly enhances the frequency of opening of acetylcholine activated channels. The potentiating effect of Ca2+ is mimicked by Ba2+ and Sr2+, but barely by Mg2+. These data support the existence of positively acting allosteric sites for Ca2+, distinct from those involved in the decrease of single-channel conductance. A model in which external Ca2+ changes the properties of activation of the nAChR appears consistent with these data.  相似文献   

5.
Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.  相似文献   

6.
To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release ofl-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinty glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process forl-[3H] glutamate resulted in elevation ofV max with no significant alteration inK t as compared to age-matched controls. Depolarization-induced release ofl-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat.  相似文献   

7.
8.
The recognition that intracellular free calcium serves as a ubiquitous intracellular signal has motivated efforts to elucidate mechanisms by which cells regulate calcium influx. One route of entry that may offer both spatial and temporal fine resolution for altering calcium levels is that provided by cation-permeable, ligand-gated ion channels. Biophysical measurements as well as calcium imaging techniques demonstrate that neuronal nicotinic acetylcholine receptors as a class have a high relative permeability to calcium; some subtypes equal or exceed all other known receptors in this respect. Activation of nicotinic receptors on neurons can produce substantial increases in intracellular calcium levels by direct passage of calcium through the receptor channel. When multiple classes of nicotinic receptors are expressed by the same neuron, each appears capable of increasing calcium in the cell but may differ with respect to location, temporal response, agonist sensitivity, or regulation in achieving it. As a result, nicotinic receptors must be considered strong candidates for signaling molecules through which neurons regulate a diverse array of cellular events.  相似文献   

9.
Stimulation of nicotinic acetylcholine receptors protects motor neurons   总被引:3,自引:0,他引:3  
The present study demonstrated that administration of nicotine prevented glutamate-induced motor neuronal death in primary cultures of the rat spinal cord. The nicotine-induced neuroprotection was inhibited by either dihydro-beta-erythroidin (DHbetaE) or alpha-bungarotoxin (alphaBT), suggesting that it is mediated through both alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs). Both alpha4beta2 and alpha7 nAChRs were identified on rat spinal motor neurons by immunohistochemical methods. We also demonstrated that galantamine, an acetylcholinesterase inhibitor with allosteric nAChR-potentiating ligand properties, prevented glutamate-induced motor neuronal death. These results suggest that stimulation of nAChR may be used as a treatment for ALS.  相似文献   

10.
In sheep, the control of tonic and surge GnRH secretion is sexually differentiated by testosterone in utero. However, GnRH neurons are not sexually dimorphic with respect to number, distribution, or gross morphology. Therefore, this study tested the hypothesis that prenatal steroids influence synaptic input to GnRH neurons. We compared the number of synapses on GnRH neurons from male, female, and androgenized female lambs (n = 5 each). Androgenized females were exposed to testosterone during mid-gestation. Yearling lambs were perfused, and GnRH neurons were visualized using the LR-1 antibody. Five to seven GnRH neurons from the rostral preoptic area in each animal were viewed at the ultrastructural level. Afferent synapses and glial ensheathment on each neuron were counted in a single section through the plane of the nucleus. GnRH neurons from females received approximately twice as many contacts (3.6 +/- 0.7 synapses/100 microm plasma membrane) as those from male lambs (1.6 +/- 0.3; p < 0.05), similar to previous reports in rats. In addition, the number of synapses on GnRH neurons from androgenized female lambs (1.5 +/- 0.5) was similar to that from male lambs, suggesting that prenatal steroids give rise to sex differences in synaptic input to GnRH neurons.  相似文献   

11.
To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABA(A) miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and L-arginine, respectively, increased the frequency and amplitude of GABA(A) mIPSCs in both cell types (P < or = 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types (P < or = 0.002), an effect that was reduced by retrodialysis of the GABA(A)-receptor antagonist bicuculline (2 mM, P < or = 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.  相似文献   

12.
The neurosecretory neurons in the mammalian hypothalamic supraoptic nucleus receive prominent GABAergic and noradrenergic projections arising from local interneurons and the A1 cells in the ventrolateral medulla, respectively. Intracellular recordings in in vitro perfused hypothalamic explants reveal an abundance of spontaneous inhibitory postsynaptic potentials (IPSPs) and a compound IPSP after electrical stimulation in the diagonal band of Broca area. The sensitivity of both spontaneous and evoked IPSPs to intracellular chloride injection, bicuculline, and pentobarbital is consistent with a GABA-activated, chloride-mediated inhibitory synaptic input. Parallel changes in membrane voltage and conductance are present during applications of GABA and muscimol, with similar sensitivity to ionic manipulation, bicuculline, and pentobarbital. These observations contrast with the consistently excitatory effects that follow either the stimulation of A1 cells or the application of norepinephrine and alpha 1-adrenergic agonists. Norepinephrine induces membrane depolarizations and bursting activity patterns that are blocked by the selective alpha 1 antagonist prazosin. Membrane response to norepinephrine is voltage dependent and is associated with little change in conductance. GABA and norepinephrine are proposed as transmitters in the final central pathways that mediate information to supraoptic vasopressinergic neurons from peripheral baroreceptors and chemoreceptors, respectively.  相似文献   

13.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

14.
The brainstem locus coeruleus (LC), the primary norepinephrinergic (NE) nucleus in the brain, has been implicated in the abuse of drugs such as opioids. However, whether and how the LC-NE system is involved in cocaine addiction remains elusive. Here, we demonstrated cocaine-evoked synaptic plasticity of glutamatergic transmission onto LC neurons as one of the earliest traces occurring after a single injection of cocaine. Twenty-four hours after mice were injected intraperitoneally with cocaine, the evoked α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated synaptic transmission onto LC neurons were strongly potentiated without major effect on N-methyl-d-aspartate receptor (NMDAR) mediated synaptic transmission. Compared with saline-pretreated mice, AMPAR-mediated excitatory postsynaptic currents (EPSCs) of cocaine-pretreated mice showed a marked inward rectification, demonstrating the insertion of GluR2-lacking AMPARs to plasma membrane. In addition, the single injection of cocaine did not affect presynaptic glutamate release probability measured by paired pulse ratio. Furthermore, we found that the cocaine-induced potentiation of AMPAR EPSCs could be blocked by prazosin, an inhibitor of α1-adrenoreceptor (AR), indicating that cocaine increases AMPAR transmission via α1-ARs. These results reveal that LC-NE serves as an initial target of drug intake.  相似文献   

15.
Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB) to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM) suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.  相似文献   

16.
In the CNS, fine processes of astrocytes often wrap around dendrites, axons and synapses, which provides an interface where neurons and astrocytes might interact. We have reported previously that selective Ca(2+) elevation in astrocytes, by photolysis of caged Ca(2+) by o-nitrophenyl-EGTA (NP-EGTA), causes a kainite receptor-dependent increase in the frequency of spontaneous inhibitory post-synaptic potentials (sIPSCs) in neighboring interneurons in hippocampal slices. However, tetrodotoxin (TTX), which blocks action potentials, reduces the frequency of miniature IPSCs (mIPSCs) in interneurons during Ca(2+) uncaging by an unknown presynaptic mechanism. In this study we investigate the mechanism underlying the presynaptic inhibition. We show that Ca(2+) uncaging in astrocytes is accompanied by a decrease in the amplitude of evoked IPSCs (eIPSCs) in neighboring interneurons. The decreases in eIPSC amplitude and mIPSC frequency are prevented by CPPG, a group II/III metabotropic glutamate receptor (mGluR) antagonist, but not by the AMPA/kainate and NMDA receptor antagonists CNQX/CPP. Application of either the group II mGluR agonist DCG IV or the group III mGluR agonist L-AP4 decreased the amplitude of eIPSCs by a presynaptic mechanism, and both effects are blocked by CPPG. Thus, activation of mGluRs mediates the effects of Ca(2+) uncaging on mIPSCs and eIPSCs. Our results indicate that Ca(2+)-dependent release of glutamate from astrocytes can activate distinct classes of glutamate receptors and differentially modulate inhibitory synaptic transmission in hippocampal interneurons.  相似文献   

17.
18.
We describe a general diffusion model for analyzing the efficacy of individual synaptic inputs to threshold neurons. A formal expression is obtained for the system propagator which, when given an arbitrary initial state for the cell, yields the conditional probability distribution for the state at all later times. The propagator for a cell with a finite threshold is written as a series expansion, such that each term in the series depends only on the infinite threshold propagator, which in the diffusion limit reduces to a Gaussian form. This procedure admits a graphical representation in terms of an infinite sequence of diagrams. To connect the theory to experiment, we construct an analytical expression for the primary correlation kernel (PCK) which profiles the change in the instantaneous firing rate produced by a single postsynaptic potential (PSP). Explicit solutions are obtained in the diffusion limit to first order in perturbation theory. Our approximate expression resembles the PCK obtained by computer simulation, with the accuracy depending strongly on the mode of firing. The theory is most accurate when the synaptic input drives the membrane potential to a mean level more than one standard deviation below the firing threshold, making such cells highly sensitive to synchronous synaptic input.  相似文献   

19.
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.  相似文献   

20.
A group of serotonergic cells, located in the pedal ganglia ofHelix lucorum, modulates synaptic responses of neurons involved in withdrawal behavior. Extracellular or intracellular stimulation of these serotonergic cells leads to facilitation of spike responses to noxious stimuli in the putative command neurons for withdrawal behavior. Noxious tactile stimuli elicit an increase in background spiking frequency in the modulatory neurons and a corresponding increase in stimulus-evoked spike responses in withdrawal interneurons. The serotonergic neurons have processes in the neuropil of the parieto-visceral ganglia complex, consistent with their putative role in modulating the activity of giant parietal interneurons, which send processes to the same neuropil and to the pedal ganglia. The serotonergic cells respond to noxious tactile and chemical stimuli. Although the group as a whole respond to noxious stimuli applied to any part of the body, most cells respond more to ipsilateral than contralateral stimulation, and exhibit differences in receptive areas. Intracellular investigation revealed electrical coupling between serotonergic neurons which could underlie the recruitment of members of the group not responding to a given noxious stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号