共查询到20条相似文献,搜索用时 0 毫秒
1.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself. 相似文献
2.
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction. 相似文献
3.
Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins. 相似文献
4.
Delivery of proteins to the vacuole of the yeast Saccharomyces cerevisiae requires the function of the endosomal syntaxin, Pep12p. Many vacuolar proteins, such as the soluble vacuolar hydrolase, carboxypeptidase Y (CPY), traverse the prevacuolar compartment (PVC) en route to the vacuole. Here we show that deletion of the carboxy-terminal transmembrane domain of Pep12p results in a temperature-conditional block in transport of CPY to the PVC. The PVC also receives traffic from the early endosome and the vacuole, and mutation in PEP12 also blocks these other trafficking pathways into the PVC. Therefore, Pep12p is a multifunctional syntaxin that is required for all known trafficking pathways into the yeast PVC. Finally, we found that the internalized pheromone receptor, Ste3p, can cycle out of the PVC in a VPS27 -independent fashion. 相似文献
5.
nSec1 binds a closed conformation of syntaxin1A 总被引:15,自引:0,他引:15
The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion. 相似文献
6.
Pengcheng Wang Marcia D. Howard Honghao Zhang Narendranath Reddy Chintagari Anna Bell Nili Jin Amarjit Mishra Lin Liu 《Cell biology international》2012,36(9):785-791
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t‐SNARE (target SNARE) proteins, syntaxin 2 and SNAP‐23 (N‐ethylmaleimide‐sensitive factor‐attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle‐associated membrane proteins) in rat lung and alveolar type II cells. VAMP‐2, ?3 and ?8 are shown in type II cells at both mRNA and protein levels. VAMP‐2 and ?8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP‐2 was co‐localized with the LB marker protein, LB‐180. Functionally, the cytoplasmic domain of VAMP‐2, but not VAMP‐8 inhibited surfactant secretion in type II cells. We suggest that VAMP‐2 is the v‐SNARE (vesicle SNARE) involved in regulated surfactant secretion. 相似文献
7.
Compound exocytosis occurs in many cell types. It represents a specialized form of secretion in which vesicles undergo fusion with each other as well as with the plasma membrane. In most cases, compound exocytosis occurs sequentially, with deeper-lying vesicles fusing, after a delay, with vesicles that have already fused with the plasma membrane. However, in some cells, vesicles can also apparently fuse with each other intracellularly before any interaction with the plasma membrane. In this review, we discuss the general features of compound exocytosis, and the features that are specific to particular cells. We consider mechanisms that might impose the requirement for vesicles to fuse with the plasma membrane before they become able to fuse with each other, the possibility that there are biochemical differences between vesicle-plasma membrane fusion events and subsequent secondary homotypic vesicle fusion events, and the role that cytoskeletal elements might play in the stabilization of fused vesicles, in order to permit secondary fusion events. Finally, we discuss the likely physiological significance of compound exocytosis in the various cell types in which it exists. 相似文献
8.
Tucker WC Edwardson JM Bai J Kim HJ Martin TF Chapman ER 《The Journal of cell biology》2003,162(2):199-209
The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I-XI to interfere with endogenous syt-effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin-SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)-binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis. 相似文献
9.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function. 相似文献
10.
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly. 相似文献
11.
12.
SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs 总被引:4,自引:0,他引:4
下载免费PDF全文

Skeletal muscles display a remarkable diversity in their arrangement of fibers into fascicles and in their patterns of innervation, depending on functional requirements and species differences. Most human muscle fascicles, despite their great length, consist of fibers that extend continuously from one tendon to the other with a single nerve endplate band. Other mammalian muscles have multiple endplate bands and fibers that do not insert into both tendons but terminate intrafascicularly. We investigated whether these alternate structural features may dictate different modes of cell hypertrophy in two mouse gracilis muscles, in response to expression of a muscle-specific insulin-like growth factor (IGF)-1 transgene (mIGF-1) or to chronic exercise. Both hypertrophic stimuli independently activated GATA-2 expression and increased muscle cross-sectional area in both muscle types, with additive effects in exercising myosin light chain/mIGF transgenic mice, but without increasing fiber number. In singly innervated gracilis posterior muscle, hypertrophy was characterized by a greater average diameter of individual fibers, and centralized nuclei. In contrast, hypertrophic gracilis anterior muscle, which is multiply innervated, contained longer muscle fibers, with no increase in average diameter, or in centralized nuclei. Different modes of muscle hypertrophy in domestic and laboratory animals have important implications for building appropriate models of human neuromuscular disease. 相似文献
13.
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes. 相似文献
14.
Andreas Mayer 《Trends in biochemical sciences》2001,26(12):717-723
The fusion of biological membranes is the terminal step of all vesicular trafficking reactions in eukaryotic cells. Therefore, this fusion is fundamental for the transfer of proteins and lipids between different compartments, for exocytosis and for the structural integrity of organelles. In the past decade, many parts of the molecular machinery involved in fusion have been uncovered. Although the mechanisms responsible for mutual recognition and binding of membranes inside eukaryotes are becoming reasonably well known, there is considerable uncertainty as to what causes the actual merging of the lipid bilayer. Two classes of mechanisms have been proposed. Proximity models postulate that very close apposition of membranes suffices to induce fusion. By contrast, pore models propose that continuous proteinaceous pores between apposed membranes could be the basis for fusion. 相似文献
15.
The SNARE complex, involved in vesicular trafficking and exocytosis, is composed of proteins in the vesicular membrane (v-SNAREs) that intertwine with proteins of the target membrane (t-SNAREs). Our results show that modified large dense-core neurosecretory granules (NSGs), isolated from the bovine neurohypophysis, spontaneously fuse with a planar lipid membrane containing only the t-SNARE syntaxin 1A. This provides evidence that syntaxin alone is able to form a functional fusion complex with native v-SNAREs of the NSG. The fusion was similar to constitutive, not regulated, exocytosis because changes in free [Ca2+] had no effect on the syntaxin-mediated fusion. Several deletion mutants of syntaxin 1A were also tested. The removal of the regulatory domain did not significantly reduce spontaneous fusion. However, a syntaxin deletion mutant consisting of only the transmembrane domain was incapable of eliciting spontaneous fusion. Finally, a soluble form of syntaxin 1A (lacking its transmembrane domain) was used to saturate the free syntaxin-binding sites of modified NSGs. This treatment blocks spontaneous fusion of these granules to a bilayer containing full-length syntaxin 1A. This method provides an effective model system to study possible regulatory components affecting vesicle fusion. 相似文献
16.
Malsam J Parisotto D Bharat TA Scheutzow A Krause JM Briggs JA Söllner TH 《The EMBO journal》2012,31(15):3270-3281
Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger-a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion. 相似文献
17.
Shifeng Wang Yinghui Liu Lauren Crisman Chun Wan Jessica Miller Haijia Yu Jingshi Shen 《Traffic (Copenhagen, Denmark)》2020,21(10):636-646
Exocytosis is a vesicle fusion process driven by soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin‐stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR‐Cas9 genome editing to delete the two tomosyn‐encoding genes in adipocytes. We observed that both basal and insulin‐stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α‐SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin‐stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn‐arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes. 相似文献
18.
19.
Melia TJ 《FEBS letters》2007,581(11):2131-2139
Three recent papers have addressed a long-standing question in exocytosis: how does a sudden calcium influx trigger a coordinated synchronous release in regulated exocytosis [Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680; Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. and McNew, J.A. (2006) Hemifusion arrest by complexin is relieved by Ca(2+)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748-750; Tang, J., Maximov, A., Shin, O.H., Dai, H., Rizo, J. and Sudhof, T.C. (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187]? Using diverse approaches that include cell-free reconstitution of the membrane fusion machinery and in vivo manipulation of fusogenic proteins, these groups have established that the complexin proteins are fusion clamps. By arresting vesicle secretion just prior to fusion, complexin primes select vesicles for a fast, synchronous response to calcium. 相似文献
20.
The fusion of intracellular vesicles with their target membranes is an essential feature of the compartmental structure of eukaryotic cells. This process requires proteins that dictate the targeting of a vesicle to the correct cellular location, mediate bilayer fusion and, in some systems, regulate the precise time at which fusion occurs. Recent biophysical and structural studies of these proteins have begun to provide a foundation for understanding their functions at a molecular level. 相似文献