首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uterine vasculature of women and sheep predominantly expresses type 2 ANG II receptors that do not mediate vasoconstriction. Although systemic ANG II infusions increase uterine vascular resistance (UVR), this could reflect indirect mechanisms. Thus we compared systemic and local intra-arterial ANG II infusions in six near-term pregnant and five ovariectomized nonpregnant ewes to determine how ANG II increases UVR. Systemic ANG II dose-dependently (P > 0.001) increased arterial pressure (MAP) and UVR and decreased uterine blood flow (UBF) in pregnant and nonpregnant ewes; however, nonpregnant responses exceeded pregnant (P < 0.001). In contrast, local ANG II infusions at rates designed to achieve concentrations in the uterine circulation comparable to those seen during systemic infusions did not significantly decrease UBF in either group, and changes in MAP and UVR were absent or markedly attenuated. When MAP rose during local ANG II, which only occurred with doses > or =2 ng/ml, increases in MAP were delayed more than twofold compared with responses during systemic ANG II infusions and always preceded decreases in UBF, resembling that observed during systemic ANG II infusions. These observations demonstrate attenuated uterine vascular responses to systemic ANG II during pregnancy and suggest that systemic ANG II may increase UVR through release of another potent vasoconstrictor(s) into the systemic circulation.  相似文献   

2.
Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT(2)) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT(1)) receptor-mediated alpha-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine alpha-receptor blockade and in the absence or presence of AT(1) receptor blockade in pregnant and nonpregnant ewes. Systemic alpha-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine alpha-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine alpha-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT(1) receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT(1) receptor blockade + systemic alpha-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT(2) receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT(1) receptors, whereas increases in UVR reflect AT(1) receptor-mediated release of an alpha-agonist and uterine autoregulatory responses.  相似文献   

3.
The intact ovine uterine vascular bed (UVB) is sensitive to α-agonists and refractory to angiotensin II (ANG II) during pregnancy; the converse occurs in the systemic circulation. The mechanism(s) responsible for these differences in uterine sensitivity are unclear and may reflect predominance of nonconstricting AT(2) receptors (AT(2)R) in uterine vascular smooth muscle (UVSM). The contribution of the placental vasculature also is unclear. Third generation and precaruncular/placental arteries from nonpregnant (n = 16) and term pregnant (n = 23) sheep were used to study contraction responses to KCl, norepinephrine (NE), and ANG II (with/without ATR specific inhibitors) and determine UVSM ATR subtype expression and contractile protein content. KCl and NE increased third generation and precaruncular/placental UVSM contractions in a dose- and pregnancy-dependent manner (P ≤ 0.001). ANG II only elicited modest contractions in third generation pregnant UVSM (P = 0.04) and none in precaruncular/placental UVSM. Moreover, compared with KCl and NE, ANG II contractions were diminished ≥ 5-fold. Whereas KCl and ANG II contracted third generation>precaruncular/placental UVSM, NE-induced contractions were similar throughout the UVB. However, each agonist increased third generation contractions ≥ 2-fold at term, paralleling increased actin/myosin and cellular protein content (P ≤ 0.01). UVSM AT(1)R and AT(2)R expression was similar throughout the UVB and unchanged during pregnancy (P > 0.1). AT(1)R inhibition blocked ANG II-mediated contractions; AT(2)R blockade, however, did not enhance contractions. AT(2)R predominate throughout the UVB of nonpregnant and pregnant sheep, contributing to an inherent refractoriness to ANG II. In contrast, NE elicits enhanced contractility throughout the ovine UVB that exceeds ANG II and increases further at term pregnancy.  相似文献   

4.
We examined whether ANG II receptors in the central nervous system mediate hemodynamic responses to pharmacological (cocaine) and behavioral (cold water) stressors. After administration of cocaine (5 mg/kg iv), rats were classified as vascular responders (VR) if their pressor response was due entirely to an increase in systemic vascular resistance (SVR) despite a decrease in cardiac output (CO). Cocaine elicited a pressor response in mixed responders (MR) that was dependent on small increases in both SVR and CO. ANG II (30 ng/5 microl icv, 5 min before cocaine) augmented the decrease in CO in VR and prevented the increase in CO in MR. Administration of [Sar(1),Thr(8)]ANG II (20 microg/5 microl icv; sarthran) before cocaine attenuated the decrease in CO and the large increase in SVR in VR so that they were no longer different from MR. Losartan (20 microg icv) or captopril (50 microg icv) preceding cocaine administration also attenuated the decrease in CO and the large increase in SVR seen in VR only. The role of angiotensin was not specific for cocaine, because ANG II (icv) pretreatment before startle with cold water (1 cm deep) enhanced the decrease in CO and the increase in SVR in both MR and VR, whereas losartan (icv) pretreatment before startle attenuated the decrease in CO and the increase in SVR in VR so that they were no longer different from MR. These data suggest that central ANG II receptors mediate the greater vascular and cardiac responsiveness in vascular responders to acute pharmacological and behavioral stressors.  相似文献   

5.
The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 microg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng x kg(-1) x min(-1) for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT(2)) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT(1)) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT(2) blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 microg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow (P < 0.03), which were potentiated in the presence of the AT(2) antagonist (P < 0.02). Addition of the AT(1) antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure (P < 0.01). Significant uterine vasodilation (P < 0.01) was noted with AT(1) blockade in the second experiment, which was reversed by administration of the AT(2) antagonist or by the nitric oxide synthetase inhibitor N(omega)-nitro-L-arginine methyl ester. We conclude that the AT(1)-receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT(2)-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT(2)-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.  相似文献   

6.
D R Garris 《Teratology》1984,29(1):93-99
The relationships between uterine blood flow (UBF) and growth related changes in guinea pig placental weight, fetal weight, and crown-rump (C-R) length were examined at 5-day intervals throughout pregnancy. Between days 5 and 20 (Day 0 = ovulation) of pregnancy, UBF reached peak levels that were related to increases in total uterine weight as a result of fetal-placental differentiation. Between days 20 and 40 of pregnancy, UBF remained at constant, basal levels while placental weight increased at a rate of approximately 500 mg per 5-day interval. During this time period, fetal weight and C-R length continued to increase, but at a less rapid rate. Between days 40 and 55 of pregnancy, a secondary elevation in UBF was observed that was temporally related to third trimester growth of the fetus (ie, weight and C-R length). Near term (day 65), UBF decreased and placental growth reached a plateau, whereas fetal weight and C-R length continued to increase. In order to determine the direct effects of UBF on regulating fetal-placental growth, mid-gestational (days 35-50) pregnant guinea pigs were subjected to UBF reduction and the growth parameters of the manipulated fetal-placental units were then examined at 2, 3, 4, and 10 days post-alteration and compared to controls. The reduction in UBF at hyperemic pregnancy sites to basal flow levels resulted in an abrupt curtailment of subsequent placental growth noticeable within 48 hr of the vascular reduction. Subsequently, fetal weight and crown-rump length parameters were depressed with respect to controls, but not until 4 and 10 days post-alteration, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to elucidate the role of circulating ANG II in mediating changes in systemic and renal hemodynamics, salt and water balance, and neurohormonal activation during the early progression of heart failure. This objective was achieved by subjecting six dogs to 14 days of rapid ventricular pacing (240 beats/min) while fixing plasma ANG II concentration (by infusion of captopril + ANG II) either at approximately normal (days 1-8, 13-14) or at high physiological (days 9-12) levels. Salt and water retention occurred during the initial days of pacing before sodium and fluid balance was achieved by day 8. At this time, cardiac output and mean arterial pressure were reduced to approximately 55 and 75% of control, respectively; compared with cardiac output, reductions in renal blood flow were less pronounced. Although plasma ANG II concentration was maintained at approximately normal levels, there were sustained elevations in total peripheral resistance (to approximately 135% of control), filtration fraction (to approximately 118% of control), and plasma norepinephrine concentration (to 2-3 times control). During the subsequent high rate of ANG II infusion on days 9-12, there were no additional sustained long-term changes in either systemic or renal hemodynamics other than a further rise in right atrial pressure. However, high plasma levels of ANG II induced sustained antinatriuretic, sympathoexcitatory, and dipsogenic responses. Because these same long-term changes occur in association with activation of the renin-angiotensin system during the natural evolution of this disease, these results suggest that increased plasma levels of ANG II play a critical role in the spontaneous transition from compensated to decompensated heart failure.  相似文献   

8.
The role of cyclooxygenase (COX)-1 and -2 in prostanoid formation and modulation of pressor responses to ANG II was investigated in the pulmonary and systemic vascular beds in the rat. In the present study, selective COX-1 and -2 inhibitors attenuated increases in pulmonary arterial pressure and decreases in systemic arterial pressure in response to arachidonic acid but did not alter responses to PGE1 or U-46619. The selective COX-1 and -2 inhibitors did not modify systemic pressor responses to injections or infusions of ANG II or pulmonary pressor responses to injections of the peptide. COX-2 inhibitors did not alter, whereas a COX-1 inhibitor depressed, arachidonic acid-induced platelet aggregation. These data provide evidence in support of the hypothesis that prostanoid synthesis occurs by way of the COX-1 and -2 pathways in the pulmonary and systemic vascular beds but that pressor responses to ANG II are not mediated or modulated by these pathways in the rat.  相似文献   

9.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

10.
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.  相似文献   

11.
Vascular smooth muscle (VSM) maturation is developmentally regulated and differs between vascular beds. The maturation and contribution of VSM function to tissue blood flow and blood pressure regulation during early gestation are unknown. The carotid artery (CA) contributes to fetal cerebral blood flow regulation and well being. We studied CA VSM contractility, protein contents, and phenotype beginning in the midthird of ovine development. CAs were collected from early (88-101 day of gestation) and late (138-150 day; term = day 150) fetal (n = 14), newborn (6-8 day old; n = 7), and adult (n = 5) sheep to measure forces in endothelium-denuded rings with KCl, phenylephrine, and ANG II; changes in cellular proteins, including total and soluble protein, actin and myosin, myosin heavy chain isoforms (MHC), filamin, and proliferating cell nuclear antigen; and vascular remodeling. KCl and phenylephrine elicited age- and dose-dependent contraction responses (P < 0.001) at all ages except early fetal, which were unresponsive. In contrast, ANG II elicited dose responses only in adults, with contractility increasing greater than fivefold vs. that shown in fetal or neonatal animals (P < 0.001). Increased contractility paralleled age-dependent increases (P < 0.01) in soluble protein, actin and myosin, filamin, adult smooth muscle MHC-2 (SM2) and medial wall thickness and reciprocal decreases (P < 0.001) in nonmuscle MHC-B, proliferating cell nuclear antigen and medial cellular density. VSM nonreceptor- and receptor-mediated contractions are absent or markedly attenuated in midgestation and increase age dependently, paralleling the transition from synthetic to contractile VSM phenotype and, in the case of ANG II, paralleling the switch to the AT(1) receptor. The mechanisms regulating VSM maturation and thus blood pressure and tissue perfusion in early development remain to be determined.  相似文献   

12.
In sheep, placental size is maximal by midgestation, but blood flow continues to increase until term. No nerves are present and ANG II is thought to be a major regulator of vascular tone. We hypothesized that angiotensin type 2 receptors (AT(2)) would predominate over type 1 (AT(1)) until late in gestation and be primarily expressed in the vasculature. Real-time PCR, hybridization histochemistry, and ligand-binding studies were performed on placentae and fetal membranes at 27, 45, 66 +/- 1, 100 +/- 4, 130, and 140 days of gestation (term approximately 150 days) to determine quantitative changes and localization. The maximum level of AT(1) expression occurred in the 45-day placenta and was located predominantly in the maternal stromal cells. AT(1) receptors were expressed in the endothelial cells of the chorion in the first half of pregnancy, where later in gestation, both AT(1) and AT(2) receptors were predominant in blood vessels. These results suggest that ANG II, via the AT(1) receptor, may have hitherto unsuspected important roles in the growth/function on the ovine placenta during the maximal growth phase.  相似文献   

13.
Angiotensin II (ANG II) acts peripherally as a hormone, with actions on the vasculature, adrenals, and kidney. In addition, certain actions of ANG II in the central nervous system are directed toward cardiovascular control and fluid volume homeostasis. Dense binding sites for ANG II are found at circumventricular organs, which apparently have the ability to relay information to cardiovascular centers via neural circuitry. Microinjection of ANG II into the subfornical organ (SFO) or area postrema (AP) produces site-specific increases in blood pressure. In addition, electrophysiological studies demonstrate profound effects of ANG II, acting at the SFO, on activity of neurohypophysial neurons and release of oxytocin and vasopressin, which can be antagonized by ANG II blockers or attenuated by SFO lesions. Evidence from microinjection, electrophysiological, and lesion studies indicate a complex interaction between central sites involved in mechanisms of cardiovascular control: the SFO, AP, organum vasculosum of the lamina terminalis, and paraventricular and supraoptic nuclei of the hypothalamus. Not only is ANG II a humoral messenger in this central scenario, but evidence suggests it acts as a neurotransmitter or neuroendocrine substance within specific CNS pathways, suggesting multiple roles for this peptide in central cardiovascular control.  相似文献   

14.
Circulating vasoactive substances and hemodynamics were examined in chronically instrumented unanesthetized lambs before, during, and after cesarean section (spontaneous respiration). One of three infusions were started 20 min before birth: saline control (n = 10), saralasin (n = 5), or captopril (n = 6). Control lambs exhibited peak (means +/- SE) increases above fetal base line at 5 min after birth in plasma renin activity (5.0 +/- 1.1 to 11.0 +/- 3.4 ng.ml-1.h-1), angiotensin II (ANG II, 37 +/- 6 to 141 +/- 45 pg/ml) and total catecholamines (318 +/- 35 to 3,821 +/- 580 pg/ml). Mean systemic arterial pressure (Psa) and arterial O2 partial pressure (PaO2) increased more rapidly and to a greater extent by 1 h after birth in control lambs (Psa, 65 +/- 1 Torr; PaO2, 45 +/- 3 Torr) compared with the captopril group (Psa, 53 +/- 2 Torr; PaO2, 31 +/- 4 Torr) and the saralasin group (Psa, 56 +/- 2 Torr; PaO2, 27 +/- 3 Torr). Intravenous infusions of ANG II in control lambs, 2 h after birth resulted in a preferential systemic vs. pulmonary pressor response. The results demonstrate that at birth ANG II formation fosters the postnatal rise in Psa and PaO2, and high levels of circulating catecholamines may support postnatal cardiac output and Psa.  相似文献   

15.
Angiotensin (ANG) II effects may be partly mediated by endothelin (ET)-1. This study analyses the hemodynamic, renal, and hormonal responses of acute ET(A) receptor antagonism (LU-135252) at two ANG II plasma levels in eight conscious dogs. Protocol 1 involved a 60-min baseline, followed by two doses of ANG II for 60 min each (4 and 20 ng. kg(-1). min(-1)), termed ANG II 4 (slightly increased) and ANG II 20 (pathophysiologically increased ANG II plasma concentration). Protocol 2 was the same as protocol 1 but included 15 mg/kg iv LU-135252 after the baseline period. Protocol 3 was a 3-h time control. ANG II without LU-135252 did not increase plasma big ET-1 and ET-1, whereas LU-135252 increased ET-1 transiently after injection. This transient ET-1 increase was not reflected in urinary ET-1 excretion. The ANG II induced decreases in sodium, water, and potassium excretion, glomerular filtration rate, and fractional sodium excretion were not different with and without LU-135252. Mean arterial pressure increased during ANG II and was not lower with LU-135252 (-6 mmHg, not significant). Most importantly, during ANG II 20 LU-135252 prevented the decrease in cardiac output. Simultaneously, systemic vascular resistance increased 40% less, pulmonary vascular resistance was maintained at baseline levels, and central venous and wedge pressure were lower. Because ANG II stimulated endothelin de novo synthesis should just have started after 2 h of ANG II infusion, there must be mechanisms other than blocking the coupling of de novo synthesized endothelins to the ET(A) receptors to explain the effects of acute ET(A) receptor inhibition in our setting.  相似文献   

16.
Systemic and pulmonary vascular reactivity to graded doses of angiotensin I (ANG I), angiotensin II (ANG II), and, as a control, phenylephrine were examined in 14- or 28-day hypoxia-exposed and air control rats. Hypoxic rats exhibited pulmonary hypertension that was reversible on return to room air, but systemic arterial pressure was not altered by hypoxia. Systemic pressor responses to ANG I and ANG II were significantly less in the hypoxic rats than in the control rats at 14 and 28 days but returned to control levels in hypoxic animals that were then returned to room air, demonstrating reversibility of the hypoxia-induced changes in vascular reactivity. Pulmonary pressor responses to ANG I were significantly less at 14 days, whereas responses to ANG II were significantly greater at 28 days, in hypoxic rats than in controls. There were no significant differences in systemic and pulmonary pressor responses to phenylephrine between the hypoxic and air control animals. The altered systemic and pulmonary pressor responsiveness to ANG I and ANG II in hypoxic rats is probably related to mechanisms specific to the renin-angiotensin system, such as inhibition of intrapulmonary angiotensin-converting enzyme activity and down regulation of ANG II receptors in the systemic circulation. Further study is needed to elucidate these mechanisms.  相似文献   

17.
ANG II has a clear role in development of cardiac hypertrophy, fibrosis, and dysfunction. It has been difficult, however, to determine whether these actions are direct or consequences of its systemic hemodynamic effects in vivo. To overcome this limitation, we used transgenic mice with cardiac-specific expression of a transgene fusion protein that releases ANG II from cardiomyocytes (Tg-ANG II-cardiac) without involvement of the systemic renin-angiotensin system and tested whether increased cardiac ANG II accelerates remodeling and dysfunction postmyocardial infarction (MI), whereas those mice show no evidence of cardiac hypertrophy under the basal condition. Male 12- to 14-wk-old Tg-ANG II-cardiac mice and their wild-type littermates (WT) were subjected to sham-MI or MI by ligating the left anterior descending coronary artery for 8 wk. Cardiac ANG II levels were approximately 10-fold higher in Tg-ANG II-cardiac mice than their WT, whereas ANG II levels in plasma and other tissues did not differ between strains. Systolic blood pressure and heart rate were similar between groups with or without MI. In sham-MI, Tg-ANG II-cardiac mice had increased collagen deposition and decreased capillary density. The differences between strains became more pronounced after MI. Although cardiac function was well preserved in the Tg-ANG II-cardiac mice with sham-MI, cardiac remodeling and dysfunction post-MI were more severe than WT. Our results demonstrate that, independent of systemic hemodynamic effects, cardiac ANG II may act locally in the heart, causing interstitial fibrosis in sham-MI and accelerating deterioration of cardiac dysfunction and remodeling post-MI.  相似文献   

18.
Pregnancy is associated with a significant increase in uteroplacental blood flow (UBF), which is responsible for delivering adequate nutrients and oxygen for fetal and placental growth. The present study was designed to determine the effects of vascular insufficiency on fetal and placental growth. Thirty-nine late-term pregnant ewes were instrumented to investigate the effects of chronic UBF reduction. Animals were split into three groups based on uterine blood flow, and all animals were killed on gestational day 138. UBF, which began at 851 +/- 74 ml/min (n = 39), increased in controls (C) to 1,409 +/- 98 ml/min (day 138 of gestation) and in the moderately restricted (R(M)) group to 986 +/- 69 ml/min. In the severely restricted (R(S)) group, UBF was only 779 +/- 79 ml/min on gestational day 138. This reduction in UBF significantly affected fetal body weight with R(M) fetuses weighing 3,685 +/- 178 g and R(S) fetuses weighing 2,920 +/- 164 g compared with C fetal weights of 4,318 +/- 208 g. Fetal brain weight was not affected, whereas ponderal index was significantly reduced in R(M) (2.94 +/- 0.09) and R(S) fetuses (2.49 +/- 0.08) compared with the value of the C fetuses (3.31 +/- 0.08). Placental weight was also significantly reduced in the R(M) group, being 302 +/- 24 g, whereas the R(S) group placenta weighed 274 +/- 61 g compared with the C values of 414 +/- 57 g. Fetal heart, liver, lung, and thymus were all significantly smaller in the R(S) group. Thus the present study shows a clear relationship between the level of UBF and both fetal and placental size. Furthermore, the observation that fetal brain weight was not affected, whereas fetal body weight was significantly reduced suggests that this experimental preparation may provide a useful model in which to study asymmetric fetal growth restriction.  相似文献   

19.
We used cultured neonatal rat cardiac myocytes to test the hypothesis that all-trans retinoic acid (atRA) may act to modulate ANG II actions in inducing myocyte hypertrophy. Our observations were as follows. 1) atRA (10(-7) to approximately 10(-5) M ) inhibited ANG II-induced hyperplasia of fibroblasts in a dose-dependent manner. 2) Treatment of atRA attenuated the ANG II-induced increase in total cell protein content. 3) Treated with ANG II (10(-7) M) for 5 days, the cultured neonatal rat cardiac myocytes demonstrated an apparent accumulation of sarcomeric fiber proteins and Golgi's complex, as well as reorganization of the sarcomeric unit within individual myocytes. atRA (10(-6) M) treatment reduced the accumulation of contractile proteins and Golgi's complex without affecting the ANG II-induced reorganization of the sarcomeric unit. 4) atRA attenuated the ANG II-induced increase in intracellular Ca2+. Our results show that atRA inhibits some effects of ANG II on neonatal rat cardiac myocytes and suggest that atRA may be a therapeutic candidate for the prevention and therapy of cardiac hypertrophy and remodeling.  相似文献   

20.
Previous studies on metabolic responses to feeding (i.e. the specific dynamic action, SDA) in Antarctic fishes living at temperatures below zero have reported long-lasting increases and small peak responses. We therefore hypothesized that the postprandial hyperemia also would be limited in the Antarctic fish Pagothenia borchgrevinki. The proportion of cardiac output directed to the splanchnic circulation in unfed fish was 18%, which is similar to temperate fish species. Contrary to our prediction, however, gastrointestinal blood flow had increased by 88% at twenty four hours after feeding due to a significant increase in cardiac output and a significant decrease in gastrointestinal vascular resistance. While gastric evacuation time appeared to be longer than in comparable temperate species, digestion had clearly commenced twenty four hours after feeding as judged by a reduction in mass of the administered feed. Even so, oxygen consumption did not increase suggesting an unusually slowly developing SDA. Adrenaline and angiotensin II was injected into unfed fish to investigate neuro-humoral control mechanisms of gastrointestinal blood flow. Both agonists increased gastrointestinal vascular resistance and arterial blood pressure, while systemic vascular resistance was largely unaffected. The hypertension was mainly due to increased cardiac output revealing that the heart and the gastrointestinal vasculature, but not the somatic vasculature, are important targets for these agonists. It is suggested that the apparently reduced SDA in P. borchgrevinki is due to a depressant effect of the low temperature on protein assimilation processes occurring outside of the gastrointestinal tract, while the gastrointestinal blood flow responses to feeding and vasoactive substances resemble those previously observed in temperate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号