首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxyeicosatrienoic acids (EETs) are endothelium-derived cytochrome P-450 (CYP) metabolites of arachidonic acid that relax vascular smooth muscle by large-conductance calcium-activated potassium (BK(Ca)) channel activation and membrane hyperpolarization. We hypothesized that if smooth muscle cells (SMCs) had the capacity to synthesize EETs, endogenous EET production would increase BK(Ca) channel activity. Bovine coronary SMCs were transduced with adenovirus coding the CYP Bacillus megaterium -3 (F87V) (CYP BM-3) epoxygenase that metabolizes arachidonic acid exclusively to 14(S),15(R)-EET. Adenovirus containing the cytomegalovirus promoter-Escherichia coli beta-galactosidase was used as a control. With the use of an anti-CYP BM-3 (F87V) antibody, a 124-kDa immunoreactive protein was detected only in CYP BM-3-transduced cells. Protein expression increased with increasing amounts of virus. When CYP BM-3-transduced cells were incubated with [14C]arachidonic acid, HPLC analysis detected 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) and 14,15-EET. The identity of 14,15-EET and 14,15-DHET was confirmed by mass spectrometry. In CYP BM-3-transduced cells, methacholine (10(-5) M) increased 14,15-EET release twofold and BK(Ca) channel activity fourfold in cell-attached patches. Methacholine-induced increases in BK(Ca) channel activity were blocked by the CYP inhibitor 17-octadecynoic acid (10(-5) M). 14(S),15(R)-EET was more potent than 14(R),15(S)-EET in relaxing bovine coronary arteries and activating BK(Ca) channels. Thus CYP BM-3 adenoviral transduction confers SMCs with epoxygenase activity. These cells acquire the capacity to respond to the vasodilator agonist by synthesizing 14(S),15(R)-EET from endogenous arachidonic acid to activate BK(Ca) channels. These studies indicate that 14(S),15(R)-EET is a sufficient endogenous activator of BK(Ca) channels in coronary SMCs.  相似文献   

2.
We examined whether insulin resistance alters the function of ATP-dependent and Ca(2+)-activated K(+) channels (K(ATP) and K(Ca) channels, respectively) in pressurized isolated middle cerebral arteries (MCAs) from fructose-fed insulin-resistant (IR) and control rats. Blockade of K(Ca) channels with tetraethylammonium chloride (TEA, 2.5 mM) or iberiotoxin (IBTX, 0.1 microM) increased the spontaneously developed tone in control MCAs by 10.5 +/- 1.3% (n = 10) and 13.3 +/- 2.3% (n = 6), respectively. In the IR arteries, TEA induced similar constrictions (8.0 +/- 1.1%, n = 10), but IBTX constricted the IR arteries by only 3.1 +/- 0.9% (n = 8; P < 0.01). Bradykinin (BK)-induced endothelium-mediated relaxation was reduced in IR MCAs. Maximum relaxation to BK (10(-6) M) was 42 +/- 4% in control (n = 9) and 19 +/- 2% in IR (n = 10; P < 0.01) arteries. Pretreatment with TEA, IBTX, or the K(ATP) channel blocker glibenclamide (10 microM) inhibited relaxation to BK in control MCAs but did not alter dilation in IR arteries. Relaxation to the K(ATP) channel opener cromakalim was also diminished in IR MCAs. Maximum relaxation to cromakalim (10(-5) M) was 48 +/- 3% in control (n = 6) and 19 +/- 2% in IR arteries (n = 6; P < 0.01). These findings demonstrate that insulin resistance alters the function of K(ATP) and K(Ca) channels in isolated MCAs and affects the control of resting vascular tone and the mediation of dilator stimuli.  相似文献   

3.
Epoxyeicosatrienoic acids (EETs) are considered to be endothelium-derived hyperpolarizing factors, and are potent activators of the large-conductance, Ca(2+)-activated K(+) (BK(Ca)) channel in vascular smooth muscle. Here, we investigate the signal transduction pathway involved in the activation of BK(Ca) channels by 11,12-EET and 11,12-EET stable analogs in rat mesenteric vascular smooth muscle cells. 11,12-EET and the 11,12-EET analogs, 11-nonyloxy-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE), 11-(9-hydroxy-nonyloxy)-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE-OH) and 11,12-trans-oxidoeicosa-8(Z)-enoic acid (11,12-tetra-EET-8-ZE), caused vasorelaxation of mesenteric resistance arteries. Mesenteric myocyte whole-cell (perforated-patch) currents were substantially (approximately 150%) increased by 11,12-EET and 11,12-EET analogs. Single-channel recordings were conducted to identify the target for 11,12-EET. 11,12-EET and 11,12-EET analogs also increased mesenteric myocyte BK(Ca) channel activity in cell-attached patches. Similar results were obtained in cell-free patches. Baseline mesenteric myocyte BK(Ca) channel activity (NPo) in cell-free patches averaged less than 0.001 at +50 mV and 11,12-EET (1 micromol/L) increased NPo to 0.03+/-0.02 and 11,12-EET analogs (1 micromol/L) increased NPo to 0.09+/-0.006. Inhibition of protein phosphatase 2A (PP2A) activity with okadaic acid (10 nmol/L) completely reversed 11,12-EET stimulated BK(Ca) channel activity and greatly attenuated 11,12-ether-EET-8-ZE mesenteric resistance artery vasorelaxation. 11,12-EET and 11,12-EET analogs increased mesenteric myocyte PP2A activity by 3.5-fold. Okadaic acid and the EET inhibitor, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) inhibited the 11,12-EET mediated increase in PP2A activity. These findings provide initial evidence that PP2A activity contributes to 11,12-EET and 11,12-EET analog activation of mesenteric resistant artery BK(Ca) channels and vasorelaxation.  相似文献   

4.
Insulin resistance (IR) syndrome is associated with impaired vascular relaxation; however, the underlying pathophysiology is unknown. Potassium channel activation causes vascular smooth muscle hyperpolarization and relaxation. The present study determined whether a reduction in large conductance calcium- and voltage-activated potassium (BK(Ca)) channel activity contributes to impaired vascular relaxation in IR rats. BK(Ca) channels were characterized in mesenteric microvessels from IR and control rats. Macroscopic current density was reduced in myocytes from IR animals compared with controls. In addition, inhibition of BK(Ca) channels with tetraethylammonium (1 mM) or iberiotoxin (100 nM) was greater in myocytes from control (70%) compared with IR animals (approximately 20%). Furthermore, activation of BK(Ca) channels with NS-1619 was three times more effective at increasing outward current in cells from control versus IR animals. Single channel and Western blot analysis of BK(Ca) channels revealed similar conductance, amplitude, voltage sensitivity, Ca2+ sensitivity, and expression density between the two groups. These data provide the first direct evidence that microvascular potassium currents are reduced in IR and suggest a molecular mechanism that could account for impaired vascular relaxation in IR.  相似文献   

5.
Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K(+) conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel blocker. Moreover, 3 microM 8,9- or 14,15-EET induced hyperpolarizations of -12 +/- 3.5 and -16 +/- 3 mV, with EC(50) values of 0.13 and 0.14 microM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BK(Ca) channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BK(Ca) channels at low free Ca(2+) concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect.  相似文献   

6.
Endothelium-derived hyperpolarizing factor (EDHF) is released in response to agonists such as ACh and bradykinin and regulates vascular smooth muscle tone. Several studies have indicated that ouabain blocks agonist-induced, endothelium-dependent hyperpolarization of smooth muscle. We have demonstrated that epoxyeicosatrienoic acids (EETs), cytochrome P-450 metabolites of arachidonic acid, function as EDHFs. To further test the hypothesis that EETs represent EDHFs, we have examined the effects of ouabain on the electrical and mechanical effects of 14,15- and 11,12-EET in bovine coronary arteries. These arteries are relaxed in a concentration-dependent manner to 14,15- and 11,12-EET (EC(50) = 6 x 10(-7) M), bradykinin (EC(50) = 1 x 10(-9) M), sodium nitroprusside (SNP; EC(50) = 2 x 10(-7) M), and bimakalim (BMK; EC(50) = 1 x 10(-7) M). 11,12-EET-induced relaxations were identical in vessels with and without an endothelium. Potassium chloride (1-15 x 10(-3) M) inhibited [(3)H]ouabain binding to smooth muscle cells but failed to relax the arteries. Ouabain (10(-5) to 10(-4) M) increased basal tone and inhibited the relaxations to bradykinin, 11,12-EET, and 14,15-EET, but not to SNP or BMK. Barium (3 x 10(-5) M) did not alter EET-induced relaxations and ouabain plus barium was similar to ouabain alone. Resting membrane potential (E(m)) of isolated smooth muscle cells was -50.2 +/- 0.5 mV. Ouabain (3 x 10(-5) and 1 x 10(-4) M) decreased E(m) (-48.4 +/- 0.2 mV), whereas 11,12-EET (10(-7) M) increased E(m) (-59.2 +/- 2.2 mV). Ouabain inhibited the 11,12-EET-induced increase in E(m). In cell-attached patch clamp studies, 11,12-EET significantly increased the open-state probability (NP(o)) of a calcium-activated potassium channel compared with control cells (0.26 +/- 0.06 vs. 0.02 +/- 0.01). Ouabain did not change NP(o) but blocked the 14,15-EET-induced increase in NP(o). These results indicate that: 1) EETs relax coronary arteries in an endothelium-independent manner, 2) unlike EETs, potassium chloride does not relax the coronary artery, and 3) ouabain inhibits bradykinin- and EET-induced relaxations as has been reported for EDHF. These findings provide further evidence that EETs are EDHFs.  相似文献   

7.
The perivascular sensory nerve (PvN) Ca(2+)-sensing receptor (CaR) is implicated in Ca(2+)-induced relaxation of isolated, phenylephrine (PE)-contracted mesenteric arteries, which involves the vascular endogenous cannabinoid system. We determined the effect of inhibition of diacylglycerol (DAG) lipase (DAGL), phospholipase A(2) (PLA(2)), and cytochrome P-450 (CYP) on Ca(2+)-induced relaxation of PE-contracted rat mesenteric arteries. Our findings indicate that Ca(2+)-induced vasorelaxation is not dependent on the endothelium. The DAGL inhibitor RHC 802675 (1 microM) and the CYP and PLA(2) inhibitors quinacrine (5 microM) (EC(50): RHC 802675 2.8 +/- 0.4 mM vs. control 1.4 +/- 0.3 mM; quinacrine 4.8 +/- 0.4 mM vs. control 2.0 +/- 0.3 mM; n = 5) and arachidonyltrifluoromethyl ketone (AACOCF(3), 1 microM) reduced Ca(2+)-induced relaxation of mesenteric arteries. Synthetic 2-arachidonoylglycerol (2-AG) and glycerated epoxyeicosatrienoic acids (GEETs) induced concentration-dependent relaxation of isolated arteries. 2-AG relaxations were blocked by iberiotoxin (IBTX) (EC(50): control 0.96 +/- 0.14 nM, IBTX 1.3 +/- 0.5 microM) and miconazole (48 +/- 3%), and 11,12-GEET responses were blocked by IBTX (EC(50): control 55 +/- 9 nM, IBTX 690 +/- 96 nM) and SR-141716A. The data suggest that activation of the CaR in the PvN network by Ca(2+) leads to synthesis and/or release of metabolites of the CYP epoxygenase pathway and metabolism of DAG to 2-AG and subsequently to GEETs. The findings indicate a role for 2-AG and its metabolites in Ca(2+)-induced relaxation of resistance arteries; therefore this receptor may be a potential target for the development of new vasodilator compounds for antihypertensive therapy.  相似文献   

8.
Epoxyeicosatrienoic acids (EETs) are released from endothelial cells and potently dilate small arteries by hyperpolarizing vascular myocytes. In the present study, we investigated the structural specificity of EETs in dilating canine and porcine coronary microvessels (50-140 microm ID) and activating large-conductance Ca2+-activated K+ (BK(Ca)) channels. The potencies and efficacies of EET regioisomers and enantiomers were compared with those of two EET homologs: epoxyeicosaquatraenoic acids (EEQs), which are made from eicosapentaenoic acid by the same cytochrome P-450 epoxygenase that generates EETs from arachidonic acid, and epoxydocosatetraenoic acids (EDTs), which are EETs that are two carbons longer. With EC50 values of 3-120 pM but without regio- or stereoselectivity, EETs potently dilated canine and porcine microvessels. Surprisingly, the EEQs and EDTs had comparable potencies and efficacies in dilating microvessels. Moreover, 50 nM 13,14-EDT activated the BK(Ca) channels with the same efficacy as either 11,12-EET enantiomer at 50 nM. We conclude that coronary microvessels and BK(Ca) channels possess low structural specificity for EETs and suggest that EEQs and EDTs may thereby also be endothelium-derived hyperpolarizing factors.  相似文献   

9.
Although it is well established that diabetes impairs endothelium-dependent vasodilation, including those pathways involving vascular myocyte large-conductance Ca(2+)-activated K(+) channels (BK(Ca)), little is known about the effects of diabetes on BK(Ca) activation as an intrinsic response to contractile stimulation. We have investigated this mechanism in a model of Type 2 diabetes, the male Zucker diabetic fatty (ZDF) rat. BK(Ca) function in prediabetic (5-7 wk) and diabetic (17-20 wk) ZDF and lean control animals was assessed in whole arteries using myograph and electrophysiology techniques and in freshly dissociated myocytes by patch clamping. Log EC(25) values for phenylephrine concentration-tension curves were shifted significantly to the left by blockade of BK(Ca) with iberiotoxin (IBTX) in arteries from non- and prediabetic animals but not from diabetic animals. Smooth muscle hyperpolarizations of arteries evoked by the BK(Ca) opener NS-1619 were significantly reduced in the diabetic group. Voltage-clamp recordings indicated that IBTX-sensitive currents were not enhanced to the extent observed in nondiabetic controls by increasing the Ca(2+) concentration in the pipette solution or the application of NS-1619 in myocytes from diabetic animals. An alteration in the expression of BK(Ca) beta(1) subunits was not evident at either the mRNA or protein level in arteries from diabetic animals. Collectively, these results suggest that myocyte BK(Ca) of diabetic animals does not significantly oppose vasoconstriction, unlike that of prediabetic and control animals. This altered function was related to a reduced Ca(2+)-dependent activation of the channel not involving beta(1) subunits.  相似文献   

10.
A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels is present following in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. We tested the hypothesis that CH removes an inhibitory effect of the scaffolding domain of caveolin-1 (Cav-1) on EC BK(Ca) channels to permit activation, thereby affecting vasoreactivity. Experiments were performed on gracilis resistance arteries and ECs from control and CH-exposed (380 mmHg barometric pressure for 48 h) rats. EC membrane potential was hyperpolarized in arteries from CH-exposed rats and arteries treated with the cholesterol-depleting agent methyl-β-cyclodextrin (MBCD) compared with controls. Hyperpolarization was reversed by the BK(Ca) channel antagonist iberiotoxin (IBTX) or by a scaffolding domain peptide of Cav-1 (AP-CAV). Patch-clamp experiments documented an IBTX-sensitive current in ECs from CH-exposed rats and in MBCD-treated cells that was not present in controls. This current was enhanced by the BK(Ca) channel activator NS-1619 and blocked by AP-CAV or cholesterol supplementation. EC BK(Ca) channels displayed similar unitary conductance but greater Ca(2+) sensitivity than BK(Ca) channels from vascular smooth muscle. Immunofluorescence imaging demonstrated greater association of BK(Ca) α-subunits with Cav-1 in control arteries than in arteries from CH-exposed rats, although fluorescence intensity for each protein did not differ between groups. Finally, AP-CAV restored myogenic and phenylephrine-induced constriction in arteries from CH-exposed rats without affecting controls. AP-CAV similarly restored diminished reactivity to phenylephrine in control arteries pretreated with MBCD. We conclude that CH unmasks EC BK(Ca) channel activity by removing an inhibitory action of the Cav-1 scaffolding domain that may depend on cellular cholesterol levels.  相似文献   

11.
The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome p-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) contributes to VSM cell hyperpolarization following CH. VSM cell resting membrane potential (Em) was measured in superior mesenteric artery strips isolated from rats with control barometric pressure (Pb, congruent with 630 Torr) and CH (Pb, 380 Torr for 48 h). VSM cell Em was normalized between groups following administration of the CYP inhibitors 17-octadecynoic acid and SKF-525A. VSM cell hyperpolarization after CH was not altered by cyclooxygenase inhibition, whereas the selective CYP2C9 inhibitor sulfaphenazole normalized VSM cell Em between groups. Iberiotoxin also normalized VSM cell Em, which suggests that large-conductance, Ca2+-activated K+ (BKCa) channel activity is increased after CH. Sulfaphenazole administration restored phenylephrine-induced and myogenic vasoconstriction and Ca2+ responses of mesenteric resistance arteries isolated from CH rats to control levels. Western blot experiments demonstrated that CYP2C9 protein levels were greater in mesenteric arteries from CH rats. In addition, 11,12-EET levels were elevated in endothelial cells from CH rats compared with controls. We conclude that enhanced CYP2C9 expression and 11,12-EET production following CH contributes to BKCa channel-dependent VSM cell hyperpolarization and attenuated vasoreactivity.  相似文献   

12.
Androgens are reported to have both beneficial and detrimental effects on human cardiovascular health. The aim of this study was to characterize nongenomic signaling mechanisms in coronary artery smooth muscle (CASM) and define the ionic basis of testosterone (TES) action. TES-induced relaxation of endothelium-denuded porcine coronary arteries was nearly abolished by 20 nM iberiotoxin, a highly specific inhibitor of large-conductance, calcium-activated potassium (BK(Ca)) channels. Molecular patch-clamp studies confirmed that nanomolar concentrations of TES stimulated BK(Ca) channel activity by ~100-fold and that inhibition of nitric oxide synthase (NOS) activity by N(G)-monomethyl-L-arginine nearly abolished this effect. Inhibition of nitric oxide (NO) synthesis or guanylyl cyclase activity also attenuated TES-induced coronary artery relaxation but did not alter relaxation due to 8-bromo-cGMP. Furthermore, we detected TES-stimulated NO production in porcine coronary arteries and in human CASM cells via stimulation of the type 1 neuronal NOS isoform. Inhibition of the cGMP-dependent protein kinase (PKG) attenuated TES-stimulated BK(Ca) channel activity, and direct assay determined that TES increased activity of PKG in a concentration-dependent fashion. Last, the stimulatory effect of TES on BK(Ca) channel activity was mimicked by addition of purified PKG to the cytoplasmic surface of a cell-free membrane patch from CASM myocytes (~100-fold increase). These findings indicate that TES-induced relaxation of endothelium-denuded coronary arteries is mediated, at least in part, by enhanced NO production, leading to cGMP synthesis and PKG activation, which, in turn, opens BK(Ca) channels. These findings provide a molecular mechanism that could help explain why androgens have been reported to relax coronary arteries and relieve angina pectoris.  相似文献   

13.
14.
11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.  相似文献   

15.
Epoxyeicosatrienoic acids (EETs) are metabolized by soluble epoxide hydrolase (sEH) to form dihydroxyeicosatrienoic acids (DHETs) and are putative endothelium-derived hyperpolarizing factors (EDHFs). EDHFs modulate microvascular tone; however, the chemical identity of EDHF in the human coronary microcirculation is not known. We examined the capacity of EETs, DHETs, and sEH inhibition to affect vasomotor tone in isolated human coronary arterioles (HCAs). HCAs from right atrial appendages were prepared for videomicroscopy and immunohistochemistry. In vessels preconstricted with endothelin-1, three EET regioisomers (8,9-, 11,12-, and 14,15-EET) each induced a concentration-dependent dilation that was sensitive to blockade of large-conductance Ca2+-activated K+ (BK(Ca)) channels by iberiotoxin. EET-induced dilation was not altered by endothelial denudation. 8,9-, 11,12-, and 14,15-DHET also dilated HCA via activation of BK(Ca) channels. Dilation was less with 8,9- and 14,15-DHET but was similar with 11,12-DHET, compared with the corresponding EETs. Immunohistochemistry revealed prominent expression of cytochrome P-450 (CYP450) 2C8, 2C9, and 2J2, enzymes that may produce EETs, as well as sEH, in HCA. Inhibition of sEH by 1-cyclohexyl-3-dodecylurea (CDU) enhanced dilation caused by 14,15-EET but reduced dilation observed with 11,12-EET. DHET production from exogenous EETs was reduced in vessels pretreated with CDU compared with control, as measured by liquid chromatography electrospray-ionization mass spectrometry. In conclusion, EETs and DHETs dilate HCA by activating BK(Ca) channels, supporting a role for EETs/DHETs as EDHFs in the human heart. CYP450s and sEH may be endogenous sources of these compounds, and sEH inhibition has the potential to alter myocardial perfusion, depending on which EETs are produced endogenously.  相似文献   

16.
Epoxyeicosatrienoic acids (EETs) cause vascular relaxation by activating smooth muscle large conductance Ca(2+)-activated K(+) (K(Ca)) channels. EETs are metabolized to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. We examined the contribution of 14,15-DHET to 14,15-EET-induced relaxations and characterized its mechanism of action. 14,15-DHET relaxed U-46619-precontracted bovine coronary artery rings but was approximately fivefold less potent than 14,15-EET. The relaxations were inhibited by charybdotoxin, iberiotoxin, and increasing extracellular K(+) to 20 mM. In isolated smooth muscle cells, 14,15-DHET increased an iberiotoxin-sensitive, outward K(+) current and increased K(Ca) channel activity in cell-attached patches and inside-out patches only when GTP was present. 14,15-[(14)C]EET methyl ester (Me) was converted to 14,15-[(14)C]DHET-Me, 14,15-[(14)C]DHET, and 14,15-[(14)C]EET by coronary arterial rings and endothelial cells but not by smooth muscle cells. The metabolism to 14,15-DHET was inhibited by the epoxide hydrolase inhibitors 4-phenylchalcone oxide (4-PCO) and BIRD-0826. Neither inhibitor altered relaxations to acetylcholine, whereas relaxations to 14,15-EET-Me were increased slightly by BIRD-0826 but not by 4-PCO. 14,15-DHET relaxes coronary arteries through activation of K(Ca) channels. Endothelial cells, but not smooth muscle cells, convert EETs to DHETs, and this conversion results in a loss of vasodilator activity.  相似文献   

17.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

18.
Leukemia inhibitory factor (LIF) is a cytokine, which inhibits angiogenesis and decreases endothelial cell proliferation and migration, suggesting that LIF may modulate vascular tone. In this study, we examined the effects of LIF on the tone of rat arteries. The isometric tension of ring preparations from rat superior mesenteric arteries was continuously measured. LIF relaxed the mesenteric arteries in a dose-dependent manner, when the arterial rings were precontracted with phenylephrine. The relaxation was totally inhibited by mechanical removal of endothelium. N(G)-nitro-L-arginine methyl ester did not affect the relaxation by LIF. Ca(2+)-dependent K channel (KCa) blockers, apamin with charybdotoxin, inhibited the relaxation by LIF. Catalase, an enzyme which scavenges hydrogen peroxide, also inhibited the relaxation by LIF. Endothelium-derived hyperpolarizing factor relaxes smooth muscle cells and the effect is blocked by KCa and catalase. Our results suggest that LIF regulates vascular tone through the effect of this factor.  相似文献   

19.
We recently reported that cADP-ribose (cADPR) and ADP-ribose (ADPR) play an important role in the regulation of the Ca(2+)-activated K(+) (K(Ca)) channel activity in coronary arterial smooth muscle cells (CASMCs). The present study determined whether these novel signaling nucleotides participate in 11,12-epoxyeicosatrienoic acid (11,12-EET)-induced activation of the K(Ca) channels in CASMCs. HPLC analysis has shown that 11,12-EET increased the production of ADPR but not the formation of cADPR. The increase in ADPR production was due to activation of NAD glycohydrolase as measured by a conversion rate of NAD into ADPR. The maximal conversion rate of NAD into ADPR in coronary homogenate was increased from 2.5 +/- 0.2 to 3.4 +/- 0.3 nmol*(-1) *mg protein(-1) by 11,12-EET. The regioisomers of 8,9-EET, 11,12-EET, and 14,15-EET also significantly increased ADPR production from NAD. Western blot analysis and immunoprecipitation demonstrated the presence of NAD glycohydrolase, which mediated 11,12-EET-activated production of ADPR. In cell-attached patches, 11,12-EET (100 nM) increases K(Ca) channel activity by 5.6-fold. The NAD glycohydrolase inhibitor cibacron blue 3GA (3GA, 100 microM) significantly attenuated 11,12-EET-induced increase in the K(Ca) channel activity in CASMCs. However, 3GA had no effect on the K(Ca) channels activity in inside-out patches. 11,12-EET produced a concentration-dependent relaxation of precontracted coronary arteries. This 11,12-EET-induced vasodilation was substantially attenuated by 3GA (30 microM) with maximal inhibition of 57%. These results indicate that 11,12-EET stimulates the production of ADPR and that intracellular ADPR is an important signaling molecule mediating 11,12-EET-induced activation of the K(Ca) channels in CASMCs and consequently results in vasodilation of coronary artery.  相似文献   

20.
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号