首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
目的:蛋白激酶C(PKC)活化对L-6TG大鼠肌母细胞缺血/再灌注损伤过程中细胞凋亡的影响.方法:将培养的L-6TG大鼠肌母细胞随机分为3组:①正常对照组(C组);②缺血/再灌注组(I/R组);③PMA 缺血/再灌注组(PMA组).观测了细胞内SOD、XOD、Ca2 含量的变化;采用MTT法检测线粒体的功能;利用流式细胞仪和细胞DNA电泳结果检测细胞凋亡情况;采用免疫组织化学的方法检测caspase-3的蛋白表达情况,结合自动图像分析系统对其结果进行定量分析.结果:蛋白激酶C活化可显著降低L-6TG大鼠肌母细胞I/R 4 h后细胞内XOD、Ca2 含量及凋亡细胞百分率,增加细胞内SOD活性及线粒体呼吸功能,DNA电泳无梯状条带出现,caspase-3的表达明显下调.结论:蛋白激酶C活化可明显减轻L-6TG大鼠肌母细胞缺血再灌注损伤后的细胞凋亡的发生,其机制可能与减轻氧化损伤、调节细胞内钙稳态、减轻线粒体损伤、减少caspase-3表达有关.  相似文献   

2.
Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion resulted in significant cell death, with most cell death evident during the reperfusion phase and demonstrating mitochondrial cytochrome c release within 5 min after reperfusion. By contrast, cells exposed to prolonged ischemia for 4 h had only marginally increased cell death and no detectable cytochrome c release into the cytosol. Caspase activation could not be detected after ischemia only, but it significantly increased after reperfusion. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, Ac-Asp-Gln-Thr-Asp-H, or benzyloxycarbonyl-Leu-Glu (Ome)-His-Asp-(Ome)-fluoromethyl ketone given only at reperfusion significantly attenuated cell death and resulted in return of contraction. Antixoxidants decreased cytochrome c release, nuclear condensation, and cell death. These results suggest that reperfusion oxidants initiate cytochrome c release within minutes, and apoptosis within hours, significant enough to increase cell death and contractile dysfunction.  相似文献   

3.
The calcium-sensing receptor (CaR) is a seven-transmembrane G-protein coupled receptor, which activates intracellular effectors, for example, it causes inositol phosphate (IP) accumulation to increase the release of intracellular calcium. Although intracellular calcium overload has been implicated in the cardiac ischemia/reperfusion (I/R)-induced apoptosis, the role of CaR in the induction of apoptosis has not been fully understood. This study tested the hypothesis that CaR is involved in I/R cardiomyocyte apoptosis by increasing [Ca2+]i. The isolated rat hearts were subjected to 40-min ischemia followed by 2 h of reperfusion, meanwhile GdCl3 was added to reperfusion solution. The expression of CaR increased at the exposure to GdCl3 during I/R. By laser confocal microscopy, it was observed that the intracellular calcium was significantly increased and exhibited a Deltapsim, as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) during reperfusion with GdCl3. Furthermore, the number of apoptotic cells was significantly increased as shown by TUNEL assay. Typical apoptotic cells were observed with transmission electron microscopy in I/R with GdCl3 but not in the control group. The expression of cytosolic cytochrome c and activated caspase-9 and caspase-3 was significantly increased whereas the expression of mitochondrial cytochrome c significantly decreased in I/R with GdCl3 in comparison to the control. In conclusion, these results suggest that CaR is involved in the induction of cardiomyocyte apoptosis during ischemia/reperfusion through activation of cytochrome c-caspase-3 signaling pathway.  相似文献   

4.
We have previously demonstrated that fasting and ischemia-reperfusion (I/R) induced apoptosis in rat intestinal mucosa. It is widely accepted that apoptosis is induced through two main pathways. This study aimed to compare apoptotic pathways following fasting and I/R. Rats were divided into two groups: the I/R group involved occlusion of the superior mesenteric artery for 60 min, followed by 60-min reperfusion, whereas the fasting group involved fasting for 24 or 48 h. Intestinal apoptosis was assessed as percentage of fragmented DNA, by electrophoresis and by a terminal deoxynucleotidyl transferase mediated dUDP-biotin nick- end labeling (TUNEL) assay. Apoptotic proteins including death ligands/receptors and caspases were evaluated by Western blot analysis. Small intestinal mucosal height and mitochondrial dehydrogenase function were assessed. Fasting and I/R significantly induced intestinal apoptosis. Mucosal height was significantly decreased in fasting rats, and mitochondrial dysfunction was induced only by I/R. Expressions of Fas, Fas ligand, and TNF-alpha type 1 receptor were enhanced in fasting and I/R rats. After I/R, expressions of cytochrome c and cleaved caspase-9 were significantly increased. In contrast, expressions of cleaved caspase-8 and cleaved caspase-3 increased in fasting rats. Fasting promoted mucosal apoptosis via a receptor-mediated type I apoptotic pathway in the rat small intestine, and I/R induced apoptosis via a mitochondria-mediated type II pathway.  相似文献   

5.
We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 +/- 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH(2)F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.  相似文献   

6.
This study evaluated the time-dependent modes of cell death that occur during the course of reperfusion after 60 min ischemia. The serum ALT level increased immediately after reperfusion, peaked at 6 h and then declined gradually thereafter. This was supported by the H&E staining of the liver tissues taken at 2 h reperfusion, which revealed massive peri-portal necrosis. The succinate driven mitochondrial-swelling rate, release of cytochrome c into the cytoplasm, increase in caspase-3 activity and TUNEL stained tissue were measured to determine the changes in the biochemical markers of apoptosis. The biochemical markers of apoptosis increased by 2 h of reperfusion, peaked at 6 h and remained elevated throughout the 24 h reperfusion period. Cyclosporin A, an inhibitor of the mitochondrial permeability transition (MPT), inhibited MPT opening, the release of cytochrome c and caspase-3 activation. This indicates that necrotic death occurs particularly in the peri-portal region in the initial period of reperfusion, and delayed apoptotic death occurs primarily in the peri-central region in the liver tissues undergoing I/R.  相似文献   

7.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

8.
DNA fragmentation factors (DFF) form protein complexes consisting of nuclease DFF40/CAD and inhibitory chaperon DFF45/ICAD. Although activated caspase-3 has been shown to cleave DFF complexes with the release of active DFF40 and DNA fragmentation, the organ-specific mechanisms of DFF turnover during liver injury accompanied by massive apoptosis are unclear. In this study, we investigated hepatic profile of DFF40-immunopositive proteins in two models of liver injury in rats: acute ischemia/reperfusion (I/R) and chronic alcohol administration. We show that DFF40-like proteins occur in intact rat liver mainly as a 52kDa protein. Hepatic I/R-induced caspase-3 activation and a time-dependent accumulation of DFF40-positive protein fragments (40 and 20kDa), most likely via specific caspase-3 cleavage as evidenced by in vitro digestion of intact liver tissue with recombinant caspase-3. In addition, immunoprecipitation with DFF40 followed by Western blot with active caspase-3 antibody revealed the presence of active caspase-3 in DFF40-immunopositive 20kDa proteins. Chronic alcohol administration in rats also resulted in a dose-dependent fragmentation of DFF40 proteins similar to I/R injury. Collectively, these data demonstrate that DFF40 immunopositive proteins exist in the liver as distinct, tissue-specific molecular forms that may be processed by caspase-3 during both acute and chronic liver injury.  相似文献   

9.
Previous studies have shown that stomatin-like protein-2 (SLP-2) could regulate mitochondrial biogenesis and function. The study was designed to explore the contribution of SLP-2 to the myocardial ischemia and reperfusion (I/R) injury. Anesthetized rats were treated with SLP-2 and subjected to ischemia for 30 minutes before 3 hours of reperfusion. An oxygen-glucose deprivation/reoxygenation model of I/R was established in H9C2 cells. In vivo, SLP-2 significantly improved cardiac function recovery of myocardial I/R injury rats by increasing fractional shortening and ejection fraction. SLP-2 pretreatment alleviated infarct area and myocardial apoptosis, which was paralleled by decreasing the level of cleaved caspase-3 and the ratio of Bax/Bcl-2, increasing the content of superoxide dismutase and reducing oxidative stress damage in serum. In addition, SLP-2 increased the level of ATP and stabilized mitochondrial potential (Ψm). The present in vitro study revealed that overexpression with SLP-2 reduced H9C2 cells apoptosis, accompanied by an increased level of ATP, the ratio of mitochondrial DNA/nuclear DNA, activities of complex II and V, and decreased the production of mitochondrial reactive oxygen species. Simultaneously, SLP-2 activated the adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway in myocardial I/R injury rats and H9C2 cells. This study revealed that SLP-2 mediates the cardioprotective effect against I/R injury by regulating AMPK signaling pathway.  相似文献   

10.
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70 %) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.  相似文献   

11.
目的:探讨线粒体膜通透性转换孔(MPTP)抑制剂——环孢素A(CsA)对大鼠肺常温缺血/再灌注后细胞凋亡的影响。方法:健康SD大鼠30只,随机分为3组(n=10):假手术组、缺血/再灌注组(I/R组)和环孢素A干预组(CsA组)。复制在体肺缺血/再灌注损伤模型。采用原位缺口末端标记(TUNEL)法检测肺组织细胞凋亡,免疫组化技术检测肺组织细胞细胞色素C(CytC)的含量,以及分光光度计测定肺组织细胞caspase-3的活性。结果:I/R组肺组织细胞胞浆CytC的含量、caspase-3活性明显高于假手术组(P0.01),并观察到大量肺组织细胞凋亡的发生。CsA组与I/R组相比,CytC释放明显减少(P0.01),caspase-3活性减弱,细胞凋亡的发生率明显下降(P0.01)。结论:环孢素A可能通过抑制MPTP开放,减少缺血/再灌注后线粒体CytC的释放,从而减少肺组织细胞的凋亡。  相似文献   

12.
Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined by 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-3β were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF) and ±dP/dt. GSRd reduced myocardial infarct size, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 µM) inhibited SI/R-induced ROS generation (P<0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3, increased the phosphorylated Akt and GSK-3β, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway.  相似文献   

13.
Ischemic preconditioning provides a way of protecting organs from damage inflicted with prolonged ischemia-reperfusion. In this study, we investigated the mechanism of ischemic preconditioning involved in inhibition of prolonged ischemia-reperfusion-induced mucosal apoptosis in rat small intestine. Ischemic preconditioning was triggered by a transient occlusion of the superior mesenteric artery followed by reperfusion. Ischemia-reperfusion was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion in the small intestine. Ischemia-reperfusion alone induced mucosal apoptosis and mitochondrial respiratory dysfunction via promoted reactive oxygen species generation, reduced mitochondrial glutathione oxidation, increased mitochondrial lipid peroxidation, reduced mitochondrial membrane potential, and enhanced release of cytochrome c from mitochondria to activate caspase-9 and caspase-6 in the small intestine. Pretreatment with 20-min ischemia followed by 5-min reperfusion significantly inhibited the prolonged ischemia-reperfusion-induced mucosal apoptosis by 30%. Ischemic preconditioning ameliorated mitochondrial respiratory dysfunction by 50%, reduced reactive oxygen species generation by 38%, and suppressed mitochondrial lipid peroxidation by 36%, resulting in improvement of the mitochondrial membrane potential and prevention of cytochrome c release as well as caspase-6 activation. Results suggest that ischemic preconditioning attenuated ischemia-reperfusion-induced mucosal apoptosis partly by inhibiting the reactive oxygen species-mediated mitochondria-dependent pathway in the rat small intestine.  相似文献   

14.
Background: A major mechanism underlying warm ischemia/reperfusion (I/R) injury during liver transplantation is the activation of the caspase chain, which leads to apoptosis. Recently, it was demonstrated that the release of cathepsin B, a cysteine protease, from the cytosol in liver injury induces mitochondrial release of cytochrome c and the activation of caspase-3 and -9, thereby leading to apoptosis. The aim of this study was to ascertain if cathepsin B inactivation attenuates the apoptotic injury due to I/R in mouse liver. Methods: A model of segmental (70%) hepatic ischemia was used. Eighteen mice were anesthetized and randomly divided into three groups: (1) Control group: sham operation (laparotomy); (2) Ischemic group: midline laparotomy followed by occlusion of all structures in the portal triad to the left and median lobes for 60 min (ischemic period); (3) Study group: like group 2, but with intraperitoneal administration of a pharmacological inhibitor of cathepsin B (4 mg/100 g) 30 min before induction of ischemia. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results: Showed that at 6 h of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with cathepsin B inhibitor (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0001). The reduction in postischemic apoptotic hepatic injury in the cathepsin B inhibitor -treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). Conclusion: The administration of cathepsin B inhibitor before induction of ischemia can attenuate postischemic hepatocyte apoptosis and thereby minimize liver damage. Apoptotic hepatic injury seems to be mediated through caspase-3 activity. These findings have important implications for the potential use of cathepsin B inhibitors in I/R injury during liver transplantation.  相似文献   

15.
In monolayer cultures of P19 EC cells treated with both all-trans retinoic acid (RA) and bone morphogenetic protein (BMP)-4 (RA/BMP-4 treatment), many non-adherent apoptotic cells and activated caspase-3-positive cells were observed, but they were not observed in cells treated with RA or BMP-4 alone. Consistent with the appearance of activated caspase-3-positive cells, BMP-4 and RA together induced processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation. These three activities were observed infrequently or not at all when cells were treated with RA or BMP-4 alone. In the RA/BMP-4 treatment-induced apoptosis, caspase-9 was upstream of caspase-3 in the enzyme cascade, and the caspase-9 to -3 step was key in the apoptotic pathway. Bcl-xL inhibited processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation induced by RA/BMP-4 treatment. However, unlike staurosporine-induced apoptosis, cytochrome c, which activates caspase-9, was not detected in the cytosol of RA/BMP-4-treated cells. RA and BMP-4 may activate caspase-9 through an apoptotic pathway other than the Apaf-1/cytochrome c pathway. The prominent decrease of X-chromosome-linked inhibitory apoptosis protein (XIAP) in the cytosol may explain the activation of caspase-9 induced by RA and BMP-4 treatment.  相似文献   

16.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

17.
18.
Cardiac ischemia/reperfusion (I/R) injury induces brain pathology. Donepezil, a well-known acetylcholine esterase (AChE) inhibitor, has been proven to exert neuroprotective effects against several neurodegenerative diseases. However, the comprehensive mechanism regarding the therapeutic potential of donepezil on the brain under cardiac I/R injury remains obscure. Here, we hypothesized that treatment with donepezil ameliorates brain pathology following cardiac I/R injury by decreasing blood brain barrier (BBB) breakdown, oxidative stress, neuroinflammation, mitochondrial dysfunction, mitochondrial dynamics imbalance, microglial activation, amyloid-beta (Aβ) accumulation, neuronal apoptosis, and dendritic spine loss. Forty-eight adult male Wistar rats were subjected to surgery for cardiac I/R injury. Then, rats were randomly divided into four groups to receive either (1) saline (vehicle group), donepezil 3 mg/kg via intravenously administered (2) before ischemia (pretreatment group), (3) during ischemia (ischemia group), or (4) at the onset of reperfusion (reperfusion group). At the end of cardiac I/R paradigm, the brains were evaluated for BBB breakdown, brain inflammation, oxidative stress, mitochondrial function, mitochondrial dynamics, microglial morphology, Aβ production, neuronal apoptosis, and dendritic spine density. Administration of donepezil at all time points equally showed an attenuation of brain damage in response to cardiac I/R injury, as indicated by increased expression of BBB junction protein, reduced brain inflammation and oxidative stress, improved mitochondrial function and mitochondrial dynamics, and alleviated Aβ accumulation and microglial activation, resulting in protection of neuronal apoptosis and preservation of dendritic spine number. These findings suggest that donepezil potentially protects brain pathology caused by cardiac I/R injury regardless the timing of treatment.  相似文献   

19.
Ischemic preconditioning has shown to reduce apoptosis in the intestinal mucosa during ischemia/reperfusion. This study evaluated if the decrease of apoptotic events found during preconditioning could be related with a reduction of the substrate (i.e., xanthine/hypoxanthine) available for xanthine oxidase (XO). Animals were randomly assigned to the following study groups: C, control; I/R, ischemia/reperfusion; P+I/R, ischemic preconditioning; P+I/R+H/X, ischemic preconditioning plus hypoxanthine/xanthine, and P+I/R+H/X+Allo, ischemic preconditioning plus hypoxanthine/xanthine plus allopurinol. Caspase-3 activity, DNA fragmentation and TUNEL staining increased in the I/R group compared to control. Ischemic preconditioning (P+I/R group) was able to reverse these apoptotic variables to a level similar to that of control rats. The addition of hypoxanthine/xanthine to rats subjected to ischemic preconditioning (P+I/R+H/X group) showed the highest apoptotic activity; however, further addition of allopurinol (P+I/R+H/X+Allo group) decreased significantly apoptotic activity and events. In conclusion, intestinal ischemic preconditioning is able to reduce apoptosis during the following sustained ischemia/reperfusion event because of a reduced accumulation of xanthine/hypoxanthine nucleotide.  相似文献   

20.
Cardiomyocytes undergo apoptosis in response to ischemia and ischemia/reperfusion (I/R). During heart preservation, inhibition of apoptosis is critical to avoid organ failure. We aimed to compare the protection afforded by Celsior (Cs) and Histidine buffer solution (HBS) against apoptotic signaling in hearts subjected to moderate (4 h) versus severe (6 h) ischemia alone or followed by 30 min reperfusion. The impact of gender on cardioplegic protection was also explored. Hearts from male and female Wistar-Han rats were divided by gender in distinct groups: control, perfusion_control, ischemia, and I/R. Ischemia and I/R groups were divided in subgroups Cs or HBS, and subjected to 4 or 6 h ischemia alone or followed by reperfusion. Proteins involved in apoptotic signaling (p53, Bax, Fas, FasL, and Flip) were quantified by Western blot in mitochondria and/or whole tissue. Caspases 3, 8, and 9-like activities were measured and hemodynamic parameters were monitored. Ischemia activated p53/Bax signaling. After I/R, HBS-preserved hearts had lower p53/Bax content in mitochondrial fractions than Cs-preserved hearts. The p53/Bax decrease in tissue samples was mostly observed in females. Caspase 3-like activity was increased in HBS-preserved male hearts. The heart rate was decreased in Cs and HBS-preserved hearts. Fas protein levels remained unaltered in all conditions but soluble FasL increased from 4 to 6 h preservation in Cs and HBS. Hearts from male rats were more prone to apoptosis and myocardial dysfunction. HBS and Cs were not effective in inhibiting apoptotic signaling although HBS presented best overall results. Both solutions should be improved to prevent apoptosis and myocardial dysfunction after I/R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号