首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
OBJECTIVE AND DESIGN: The involvement of PAF, TXA2 and NO in LPS-induced pulmonary neutrophil sequestration an hyperlactataemia was studied in conscious rats. As pharmacological tools WEB 2170 (PAF receptor antagonist, 20 mg/kg), camongarel (inhibitor of TXA2 synthase, 30 mg/kg), N(G)-nitro L-arginine methyl ester (L-NAME -- non-selective nitric oxide synthase inhibitor, 30 mg/kg) were used. METHODS: Plasma lactate and NO2-/NO3- levels as well as myeloperoxidase (MPO) activity in lung tissue were measured one and five hours after administration of LPS (4 mg/kg(-1)). RESULTS: LPS induced a twofold increase in plasma lactate levels and nearly 10-fold increase in plasma NO2-/NO3- levels five but not one hour after LPS administration. However, LPS-induced increase in pulmonary MPO activity was seen at both time intervals. Neither WEB 2170 nor camonagrel changed one or five hours responses to LPS (lactate, NO2-/NO3-, MPO). L-NAME potentiated LPS-induced rise in MPO activity in the lung and this potentiation was not affected by WEB 2170 or camonagrel. L-NAME supressed plasma NO2-/NO3- response and substantially potentiated plasma lactate response to LPS and both effects were partially reversed by WEB 2170 or camonagrel. CONCLUSIONS: In summary, we demonstrated that PAF and TXA 2 play a role in overproduction of lactate during endotoxaemia in NO-deficient rats. However, these lipids do not mediate endotoxin-induced sequestration of neutrophils in the lung.  相似文献   

2.
PAF (platelet-activating factor) is an endogenous mediator of endotoxin (LPS) shock and intestinal injury. In the present study we used an improved method to quantitate intestinal PAF after LPS injection. Both column and thin layer chromatography (TLC) were used to purify PAF. We found that using C18 column eluted sequentially with 10% acetic acid, ethyl acetate and 70% ethanol, yielded consitent results. TLC yielded falsely high PAF values, possibly from an unknown tissue lipid which co-migrated with PAF, or from toxic ingredients in the silica gel. Moreover, addition of optimal amounts of Tween-20 or ethanol in the bioassay samples enhanced PAF solubility and markedly improved PAF recovery. Lastly, dilution and heparinization of platelet-rich plasma greatly improved the sensitivity of the bioassay. The overall PAF recovery under these optimal conditions was 70–80%. We found that LPS (2–10 mg/kg, iv, 90 min) stimulated PAF production in the rat ileum, but not in the jejunum and colon. The difference in PAF production did not correlate to the numbers of sequestered neutrophils (reflected by myeloperoxidase levels) after LPS injection. This selective PAF production may account for the special vulnerability of the ileum to develop injury during endotoxemia.  相似文献   

3.
Inflammatory factors such as tumor necrosis factor (TNF), interleukin 1 (IL-1), and lipopolysaccharide (LPS) greatly enhance the expression of group II phospholipase A2 (PLA2-II) mRNA, leading to increased secretion of PLA2-II enzyme from rat-cultured astrocytes. The potent antiinflammatory agent dexamethasone suppressed the PLA2-II expression induced by LPS. In vivo studies also demonstrated that the level of PLA2-II mRNA in the brain increased with intravenous injection of LPS. These results suggest that PLA2-II in the brain plays important roles in the inflammatory response. Agents which increase intracellular cAMP concentration did not stimulate PLA2-II expression by themselves but selectively enhanced TNF-induced PLA2-II expression about 5-fold. Phorbol ester, a well known protein kinase C activator, increased the PLA2-II expression. H-7, a protein kinase C inhibitor, inhibited the LPS-induced PLA2-II expression, but did not inhibit the TNF-induced one. Therefore, we conclude that the TNF-activated pathway differs from the LPS-activated one: the former is enhanced by cAMP and the latter involves protein kinase C.  相似文献   

4.
Yan GT  Hao XH  Xue H  Wang LH  Li YL  Shi LP 《生理学报》2002,54(1):28-32
为了探讨肠缺血/再灌注损伤后IL-1β基因表达和蛋白含量变化与磷脂酶A2抑制之间的关系,采用大鼠肠缺血/再灌注损伤模型,在对照组,损伤组和磷脂酶A2抑制剂处理组动物中收集血清,肺灌洗液,腹腔灌洗液及全身重要脏器组织样品,采用放射免疫法测定IL-1β含量,并且RT-PCR法测定肺组织中IL-1β和Ⅱ型PLA2基因表达,结果表明,损伤后6h血清中IL-1β含量明显高于对照组;损伤后1和3h,腹腔注保IL-1β也明显高于对照组;损伤后肝组织中IL-1β水平有明显增加,而肺,肾、肠组织中IL-1β没有明显变化。损伤后肺灌洗液中IL-1β也明显高于对照组水平,肺组织中IL-1βmRNA表达增加,而Ⅱ型PLA2mRNA在损伤后表达反而有所下降,采用磷脂酶A2抑制剂氯喹,环氧化物酶抑制剂消炎痛,血小板活化因子受体阻断剂SR27417后,IL-1β蛋白和基因表达有不同的改变,提示肠缺血/再灌注损伤后一定时间内,肝内IL-1βmRNA表达和血中IL-1β水平明显增高,但是否与磷脂酶A2激活或其代谢产物的释放有关尚需进一步证明。  相似文献   

5.
Using a gastrostomy-fed (GF) rat infant "pup-in-a-cup" model, the effects of protein deprivation and supplemental glutamine (Gln) and glutamate (Glu) were examined to test the hypothesis that Gln decreases the proinflammatory response induced by LPS in the developing infant rat small intestine. Four groups of 6- to 7-day-old pups were fed a rat milk substitute (RMS), one providing 100% and three providing 25% of normal protein intake for another 6 days. Two of the 25% protein-fed groups received supplemental Gln or Glu. GF and LPS treatment blunted body growth and intestinal villus height and increased intestinal cytokine-induced neutrophil chemoattractant (CINC) mRNA in the protein-deprived, non-Gln-treated group compared with mother-fed pups (P < 0.05). Gln blunted intestinal CINC mRNA (P < 0.05), but Glu did not. Intestinal CINC peptide in the LPS-treated pups provided 100 and 25% protein was elevated approximately 13-fold compared with the mother-reared pups (P < 0.001). Gln and Glu decreased intestinal CINC peptide by 73 and 80%, respectively. GF, LPS-treated pups also had a higher level of plasma CINC peptide (P < 0.05). Gln but not Glu decreased plasma CINC peptide (P < 0.05). An approximate sixfold elevation of intestinal MPO activity in the GF, LPS-treated rats was decreased by Gln and Glu by 92% (P < 0.001) and 54% (P < 0.05), respectively. Intestinal and plasma TNF-alpha were increased in GF, LPS-treated pups (P < 0.01), and Gln and Glu both blunted this increase (P < 0.05) in the intestine but not in the plasma. The results indicate that Gln decreases the LPS-induced inflammatory response in infant rat intestine under different conditions of protein intake.  相似文献   

6.
We previously showed that TNF and endotoxin (LPS) synergize to activate the complement system and produce shock and bowel injury in normal mice. However, C5-deficient mice were protected from these adverse effects. In this study, we show that in mice, platelet-activating factor (PAF) antagonist prevents TNF- and LPS-induced complement activation, bowel injury, and death, indicating that PAF mediates the actions of TNF and LPS. We then examined the role of the complement system in PAF-induced shock and tissue injury. We found that 1) PAF (3 micrograms/kg) induces shock, hemoconcentration, bowel necrosis, and death in normal mice, whereas C5-deficient mice are protected from these effects. (Protection was abrogated when the dose of PAF was raised to 5 micrograms/kg.) Furthermore, when C5-deficient mice were reconstituted with normal serum, they also developed shock, bowel injury, and death in response to PAF. Thus, C5 is required for PAF to induce injury. 2) PAF activates the complement system in vivo, but not in vitro. The mechanism of complement activation by PAF is unclear. Inasmuch as PAF stimulates neutrophils to release protease that may activate the complement system, we examined the effect of neutrophil depletion on PAF-induced injury and complement activation. We found that neutrophil depletion fails to prevent PAF-induced complement activation, although PAF-induced lethality is much reduced. We conclude that PAF causes complement activation, and acts in synergy with active complement fragments to produce shock and tissue injury. Neutrophils probably do not play the pivotal role in PAF-induced complement activation.  相似文献   

7.
Hou Y  Wang L  Zhang W  Yang Z  Ding B  Zhu H  Liu Y  Qiu Y  Yin Y  Wu G 《Amino acids》2012,43(3):1233-1242
The neonatal small intestine is susceptible to damage by endotoxin, but effective methods for prevention and treatment are lacking. N-acetylcysteine (NAC) is a widely used precursor of L: -cysteine for animal cells and plays an important role in protecting cells against oxidative stress. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of NAC on intestinal function. Eighteen piglets were randomly allocated into control, LPS and LPS?+?NAC groups. The control and LPS groups were fed a corn- and soybean meal-based diet, and the LPS?+?NAC group was fed the basal diet +500?mg/kg NAC. On days 10, 13 and 20 of the trial, the LPS and LPS?+?NAC groups received intraperitoneal administration of LPS (100?μg/kg BW), whereas the control piglets received saline. On day 20 of the trial, D-: xylose (0.1?g/kg BW) was orally administrated to all piglets 2?h after LPS or saline injection, and blood samples were collected 1?h thereafter. One hour blood xylose test was used to measure intestinal absorption capacity and mucosal integrity, and diamine oxidase (DAO) was used as a marker of intestinal injury. On day 21 of the trial, pigs were killed to obtain the intestinal mucosa. Compared to the control, LPS challenge reduced (P?相似文献   

8.
Treatment with inhaled carbon monoxide (CO) has been shown to ameliorate intestinal injury induced by lipopolysaccharide (LPS) or ischemia-reperfusion in experimental animals. We hypothesized that CO intraperitoneal administration (i.p) might provide similar protection against inhaled gas. In the present study, 1 h after intravenously receiving 5 mg/kg LPS, rats were exposed to either room air or 2 ml/kg of 250 ppm CO i.p for 1, 3, and 6 h. Intestinal tissues were collected to determine the levels of platelet activator factor (PAF), intercellular adhesion molecule-1 (ICAM-1), interlukin-10 (IL-10), maleic dialdehyde (MDA), cell apoptotic rate and the phosphorylated p38 mitogen activated protein kinase (MAPK), as well as myeloperoxidase (MPO) and superoxide dismutase (SOD) activity. After CO i.p, the increase of PAF, ICAM-1, MDA, MPO, and cell apoptosis rate induced by LPS was markedly reduced (P < 0.05 or 0.01), while the decrease of IL-10 and SOD was significantly increased (P < 0.05). Western blotting showed that the effects of CO i.p were mediated by p38 MAPK pathway. Thus, the results of our study show that CO i.p exerts potent protection against LPS induced injury to the intestine via anti-oxidant, anti-inflammation and anti-apoptosis, which may involve the p38 MAPK pathway.  相似文献   

9.
The mechanism of early pulmonary and systemic haemodynamic response to intravenous infusion of LPS from Escherichia coli was investigated in anesthetised Wistar rats. 10 mg of LPS given at a rate of 4 mg/kg/min but not at a rate of 1 mg/kg/min induced an increase in pulmonary arterial pressure (PAP) and a fall in systemic arterial pressure (SAP). Pretreatment with a PAF receptor antagonist; WEB 2170 (5 and 25 mg/kg) inhibited both PAP and SAP responses to LPS (4 mg/kg/min) while an inhibitor of thromboxane synthesis; Camonagrel (10 and 20 mg/kg) abolished PAP response without a major effect on SAP response to LPS. In conclusion, both PAF and TXA2 mediate LPS induced rise in pulmonary arterial pressure while LPS-induced fall in systemic arterial pressure is mediated by PAF.  相似文献   

10.
Gut mucosal injury observed during ischemia-reperfusion is believed to trigger a systemic inflammatory response leading to multiple organ failure. It should be interesting to demonstrate this relationship between gut and multiple organ failure in a sepsis model. Intestinal preconditioning (PC) can be used as a tool to assess the effect of intestinal ischemia in inflammatory response after LPS challenge. The aim of this study was to investigate the protective effect of PC against LPS-induced systemic inflammatory and intestinal heme oxygenase-1 (HO-1) expression. ES was performed with LPS (10 mg/kg iv) with or without PC, which was done before LPS. Rats were first subjected to sham surgery or PC with four cycles of 1 min ischemia and 4 min of reperfusion 24 h before LPS challenge or saline administration. PC significantly reduced fluid requirements, lung edema, intestinal lactate production, and intestinal injury. Inflammatory mRNA expressions for intestine and lung ICAM and TNF were significantly reduced after PC, and these effects were significantly abolished by zinc-protoporphyrin (a specific HO-1 activity inhibitor) and mimicked by bilirubin administration. Intestinal PC selectively increased HO-1 mRNA expression in intestine, but we have observed no expression in lungs. These findings demonstrate that intestinal injury is a important event for inflammatory response and multiple organ injury after LPS challenge. Intestinal HO-1 expression attenuates LPS-induced multiple organ failure by modulating intestine injury and its consequences on inflammatory response. Identification of the exact mechanisms responsible for intestine HO-1 induction may lead to the development of new pharmacological interventions.  相似文献   

11.
In view of the potential involvement of peripherally synthesized, circulating amphipathic mediators [such as platelet-activating factor (PAF) and prostaglandin E(2)] in the systemic inflammatory response to lipopolysaccharide (LPS), we hypothesized that transport of amphipaths by albumin is essential for conveying peripheral inflammatory signals to the brain. Our first specific aim was to test this hypothesis by studying LPS-induced fever and hypothermia in Nagase analbuminemic rats (NAR). NAR from two different colonies and normalbuminemic Sprague-Dawley rats were preimplanted with jugular catheters, and their febrile responses to a mild dose of LPS (10 microg/kg i.v.) at thermoneutrality and hypothermic responses to a high dose of LPS (500 microg/kg i.v.) in the cold were studied. NAR of both colonies developed normal febrile and hypothermic responses, thus suggesting that transport of amphipathic mediators by albumin is not indispensable for LPS signaling. Although alternative carrier proteins [such as alpha(1)-acid glycoprotein (AGP)] are known to assume transport functions of albumin in NAR, it is unknown whether inflammatory mediators are capable of inducing their actions when bound to alternative carriers. To test whether PAF, the most potent amphipathic pyrogen, causes fever when administered in an AGP-bound form was our second aim. Sprague-Dawley rats were preimplanted with jugular catheters, and their thermal responses to infusion of a 1:1 [PAF-AGP] complex (40 nmol/kg i.v.), AGP (40 nmol/kg i.v.), or various doses of free (aggregated) PAF were studied. The complex, but neither free PAF nor AGP, caused a high ( approximately 1.5 degrees C) fever with a short (< 10 min) latency. This is the first demonstration of a pyrogenic activity of AGP-bound PAF. We conclude that, in the absence of albumin, AGP and possibly other carriers participate in immune-to-brain signaling by binding and transporting amphipathic inflammatory mediators.  相似文献   

12.
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF), bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs) are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC) lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line). PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.  相似文献   

13.
Xiao GL  Luo ZQ  Xiao G  Li C  Xiong XD  Yang Y  Liu HJ 《生理学报》2008,60(3):403-408
高密度脂蛋白(high density lipoprotein, HDL)是一种血浆含量丰富的脂蛋白,通常认为它可在体内发挥抗炎作用,能够与内毒素结合而抑制其生物活性.为探讨人HDL对内毒素性急性肺损伤的影响,将昆明小鼠分为假手术对照组、脂多糖(lipopolysaccharide, LPS)组、HDL组和LPS HDL组,腹腔注射LPS(10mg/kg体重)复制内毒素性急性肺损伤模型,于腹腔注射LPS 30min后经尾静脉给予人血浆HDL(70mg/kg体重),6h后结束实验.处死动物前抽取动脉血测定血气变化(PaO2, pH, PaCO2).处死后行支气管肺泡灌洗,计数灌洗液中白细胞(white blood cell, WBC)数量,测定蛋白含量和乳酸脱氢酶(lactate dehydrogenase, LDH)活性,并取肺组织进行病理学观察,测定肺组织湿/干重比值、丙二醛(malondialdehyde, MDA)含量、髓过氧化酶(myeloperoxidase, MPO)活性和肿瘤坏死因子-α(tumor necrosis factor α, TNF-α)含量.结果显示:(1)HDL改善小鼠肺换气功能,显著降低LPS所致的PaO2、pH的降低和PaCO2的增高(P<0.01);(2)HDL显著抑制LPS所致的肺泡灌洗液中WBC数量、总蛋白浓度和LDH活性的增高(P<0.01),降低肺组织湿/干重比值、MPO活性、MDA和TNF-α含量(P<0.05, P<0.01);(3)病理形态学分析及评分显示,HDL治疗组小鼠在出血、肺水肿及肺组织内中性粒细胞浸润的程度均低于LPS所致肺损伤组(P<0.01).结果提示,HDL可减轻小鼠内毒素性急性肺损伤.  相似文献   

14.
Effect of sulfatide on acute lung injury during endotoxemia in rats   总被引:3,自引:0,他引:3  
Experimental studies have shown that intrapulmonary leukocyte sequestration and activation is implicated in the pathogenesis of acute lung injury during endotoxemia. Selectins are involved in the adhesion of leukocyte to the endothelium. Sulfatide is recognized by P selectin and blocks this adhesion molecule. We studied the effects of sulfatide on endotoxin-induced lung damage in rats. Endotoxin shock was produced in male rats by a single intravenous (i.v.) injection of 20 mg/kg of Salmonella enteritidis lipopolysaccharide (LPS). LPS administration reduced survival rate (0%, 72 h after endotoxin challenge) decreased mean arterial blood pressure (MAP), produced leukopenia (Controls = 11,234+/-231 cells/mL, LPS = 4,567+/-123 cells/mL) and increased lung myeloperoxidase activity (MPO; a marker of leukocyte accumulation) in the lung (Controls = 0.35+/-0.1 U/g/tissue; LPS = 10+/-1.2 U/g/tissue). Furthermore LPS administration markedly impaired the concentration-response curves for acetylcholine and sodium nitroprusside in isolated pulmonary arterial rings. There was also an increased staining for P-selectin in the pulmonary arteries. Sulfatide treatment (10 mg/kg, 30 min. after LPS challenge), significantly protected against LPS-induced lethality (90% survival rate and 70% survival rate 24 h and 72 h after LPS injection), reduced LPS induced hypotension, reverted leukopenia (8,895+/-234 cells/ml) and lowered lung MPO activity (1.7+/-0.9 U/g/tissue). Furthermore sulfatide restored to control values the LPS-induced impairment in arterial pulmonary vasorelaxation and reduced P-selectin immunostaining. Our data indicate that sulfatide attenuates LPS-induced lung injury and protects against endotoxin shock.  相似文献   

15.
The aim of this study was to evaluate the effect of Rho kinase inhibitor, Y-27632 on the intestinal apoptosis in endotoxemic infant rats. Wistar albino 15–17-day-old rat pups (n = 21) were randomized to three experimental groups: (1) controls; (2) endotoxemia (LPS); and (3) endotoxemia treated with Y-27632 (LPS + Y-27632). Endotoxemia was induced in rats by intraperitoneal (i.p) injection of lipopolysaccharide (Escherichia coli serotype 0111:B4; 10 mg/kg). Y-27632 was administered 5 mg/kg i.p at three times, just, 8 and 16 h after LPS injection. Twenty-four hours after LPS injection, intestinal apoptosis was assessed by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and immunohistochemistry for active caspase-3. Endotoxemia induced extensive apoptotic injury in the intestinal tissues. The administration of Y-27632 to endotoxemic infant rats caused a marked decrease in the number of apoptotic cells in both intestinal epithelium and lamina propria. In conclusion, the inhibition of Rho kinase with Y-27632 diminished the intestinal apoptotic damage induced by endotoxemia in infant rats.  相似文献   

16.
We have previously demonstrated that ascorbic acid (AsA) deficiency causes inflammatory changes in the liver and intestine in Osteogenic Disorder Shionogi (ODS) rats, which are unable to synthesize AsA. We have suggested that AsA deficiency increased intestinal interleukine (IL)-6 production, stimulating hepatic acute phase proteins (APPs) expression via the portal vein. In this study, we determined whether these hepatic and intestinal inflammatory changes by AsA deficiency are induced in germ-free (GF) ODS rats. For 18 days, male specific pathogen-free (SPF) ODS rats were fed the basal diet containing 600 mg AsA/kg (control group) or the AsA-free diet (AsA-deficient group) in SPF conditions, while male GF ODS rats were fed the basal diet (control group) or the AsA-free diet (AsA-deficient group) in GF conditions. Firstly, AsA deficiency significantly elevated the hepatic expression of APPs in both SPF and GF rats. In hepatic mRNA levels of some APPs, significant interaction between GF and AsA-deficiency effects was observed. Secondly, AsA deficiency elevated intestinal IL-6 and IL-1β mRNA levels in both SPF and GF rats, and significant interaction between GF and AsA-deficiency effects was observed in these mRNA levels of jejunum and cecum. In SPF and GF rats, AsA deficiency elevated portal IL-6 concentration. These results show that AsA deficiency caused hepatic and intestinal inflammatory changes in both the GF and SPF ODS rats and indicate that AsA deficiency could directly induce intestinal inflammatory changes without the involvement of gut microbiota.  相似文献   

17.
Dosing-time-dependent differences in lipopolysaccharide (LPS)-induced liver injury were examined in rats housed under a 12 h light:dark (LD) cycle. LPS (5 mg/kg) was intravenously injected into different groups of rats at 2, 14, or 20 h after light on (HALO). Elevations in serum liver enzymes after 14 HALO were significantly greater than those after 2 HALO. These parameters were lower in rats given LPS at 20 HALO, compared to 14 HALO. The number of polymorphonuclear cells (PMN) in the liver and the amount of hepatic myeloperoxidase activity, which reflects the number of PMN in liver tissues, was significantly greater in the 14 than in the 2 HALO group. In addition, hepatic interleukin-6 (IL-6) production in the 14 HALO group was enhanced compared to that in the 2 HALO trial. These results suggest that LPS-induced liver injury is greater during the early active than during the early resting period. Dosing-time-dependent variation in the accumulation of PMN in the liver and, potentially, subsequent IL-6 production in liver tissues might be involved in this phenomenon.  相似文献   

18.
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.  相似文献   

19.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

20.
目的:探讨黑木耳多糖对内毒素(LPS)诱导大鼠急性肾损害的保护效应及可能机制。方法:健康雄性SD大鼠,分为正常对照组、LPS组和黑木耳多糖组(LPS+黑木耳多糖)。根据分组,分别于复制模型前7 d给予生理盐水或1%黑木耳多糖(15 m L/kg)预防性灌胃。第8 d腹腔注射生理盐水或LPS(8 mg/kg),造模12 h后,通过腹主动脉采血检测血清尿素氮(BUN)、肌酐(Cr)水平,取肾脏制备匀浆检测肾组织中丙二醛(MDA)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)水平。结果:用黑木耳多糖干预后,大鼠血清中BUN、Cr水平均显著低于LPS组(P0.05);LPS组MDA含量较正常对照组增高,SOD、T-AOC水平降低,差异有统计学意义(P0.05);黑木耳多糖组MDA含量较LPS组降低,SOD、T-AOC水平升高,差异有统计学意义(P0.05)。结论:黑木耳多糖能显著提高内毒素血症大鼠的抗氧化能力,对肾脏组织有保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号