首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD+ and NADPH/NADP+. Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [γ-glutamylcysteine synthetase and glutathione synthetase].  相似文献   

2.
Analyses were made of the phsopholipid fatty acids and the antioxidant enzymes in the carp (Cyprinus carpio morpha) at three different oxygen concentrations, corresponding to hyperoxia, hypoxia and anoxia. Variations of the oxygen concentration were found to influence the quantities of phsopholipid fatty acids, as well as the antioxidant enzyme activities. In hyperoxia and hypoxia the amount of polyunsaturated fatty acids in carp liver was higher than in anoxia, but in other tissues there was no significant differences. As to the antioxidant enzyme system, the glutathione peroxidase activity and the lipid peroxidation value increased significantly with decrease of the oxygen concentration, while the total superoxide dismutase activity decreased on lowering of the oxygen level.  相似文献   

3.
Reactive oxygen species are, at least partly, involved in the diabetogenic agent-induced dysfunction of pancreatic beta-cells because the expression of antioxidative and redox proteins is low. We examined the levels of antioxidant/redox proteins, peroxiredoxins-1, -4, and -6 and glutathione reductase (GR), by immunohistochemistry and found that the expression of GR was very high in pancreatic islet cells compared to exocrine cells. When diabetes was induced by an intravenous injection of streptozotocin, the pre-administration of 1,3-bis[2-chloroethyl]-1-nitrosourea, an irreversible inhibitor of GR, made islet cells more vulnerable to streptozotocin. These data point to a pivotal role of the glutathione redox system in pancreatic islet cells against diabetogenic stress.  相似文献   

4.
Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a 13C-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-13C]glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using 1H spin-echo NMR, while 13C[1H-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.  相似文献   

5.
Membrane redox state is governed by the complex interplay between oxidation of unsaturated fatty acids and lipophilic antioxidants. In this issue of Cell Metabolism, Seiler et al. (2008) show that a lipid oxidase, 12/15-lipoxygenase, and a membrane antioxidant enzyme, glutathione peroxidase-4, interact to regulate a novel redox-dependent cell death pathway.  相似文献   

6.
7.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

8.
Abstract

Reactive oxygen species are, at least partly, involved in the diabetogenic agent-induced dysfunction of pancreatic β-cells because the expression of antioxidative and redox proteins is low. We examined the levels of antioxidant/redox proteins, peroxiredoxins-1, -4, and -6 and glutathione reductase (GR), by immunohistochemistry and found that the expression of GR was very high in pancreatic islet cells compared to exocrine cells. When diabetes was induced by an intravenous injection of streptozotocin, the pre-administration of 1,3-bis[2-chloroethyl]-1-nitrosourea, an irreversible inhibitor of GR, made islet cells more vulnerable to streptozotocin. These data point to a pivotal role of the glutathione redox system in pancreatic islet cells against diabetogenic stress.  相似文献   

9.
This research paper provides direct evidence concerning the localisation of free fatty acids in stratum corneum lipid model membranes. We employed partially deuterated free fatty acids to gain further information about the assembly of a stratum corneum lipid model membrane based on a ceramide of the phytosphingosine-type (ceramide [AP]) with particular respect to the position of the deuterated groups of the free fatty acids. The application of behenic-22,22,22-d3-acid and cerotic-12,12,13,13-d4-acid confirmed that the short-chain ceramide [AP] forces the longer-chained free fatty acids to incorporate into the bilayer created by ceramide [AP]. The ceramide [AP] molecules determine the structural assembly of this model membrane and obligate the long-chain free fatty acids to either arrange inside this formation or to separate as a fatty acid rich phase.  相似文献   

10.
The paper deals with a regulatory effect of the redox state of nicotinamide coenzymes on glyceroneogenesis in the epididymal fatty tissues involving incorporation of [2-14C] pyruvate into synthetized de novo blood glucose, glycerol and fatty acids of triacyglycerines. Large values of the NAD+/NADH and NADP+/NADPH ratios in cytoplasm and mitochondria promote a high rate of lipogenesis and glucose oxidation processes, which is pronounced in a more intense 14C incorporation into fatty acids than in triacylglycerol glycerols. A decrease in the NAD+/NADH ratio and an increase in the reducing ability of NAD-pairs under fasting intensify glyceroneogenesis in the fatty tissue. The incorporation of [14C] pyruvate into blood glucose in 3.6 times as high, the radioactivity of fatty acids lowers. Nicotinamide administered to animals after fastening inhibits glyceroneogenesis in the fatty tissue, lowering considerably the incorporation of [14C] pyruvate into triacylglycerol glycerol and blood glucose.  相似文献   

11.
Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review   总被引:63,自引:1,他引:63  
Oxidative stress is induced by a wide range of environmentalfactors including UV stress, pathogen invasion (hypersensitivereaction), herbicide action and oxygen shortage. Oxygen deprivationstress in plant cells is distinguished by three physiologicallydifferent states: transient hypoxia, anoxia and reoxygenation.Generation of reactive oxygen species (ROS) is characteristicfor hypoxia and especially for reoxygenation. Of the ROS, hydrogenperoxide (H2O2) and superoxide (O2·–) are bothproduced in a number of cellular reactions, including the iron-catalysedFenton reaction, and by various enzymes such as lipoxygenases,peroxidases, NADPH oxidase and xanthine oxidase. The main cellularcomponents susceptible to damage by free radicals are lipids(peroxidation of unsaturated fatty acids in membranes), proteins(denaturation), carbohydrates and nucleic acids. Consequencesof hypoxia-induced oxidative stress depend on tissue and/orspecies (i.e. their tolerance to anoxia), on membrane properties,on endogenous antioxidant content and on the ability to inducethe response in the antioxidant system. Effective utilizationof energy resources (starch, sugars) and the switch to anaerobicmetabolism and the preservation of the redox status of the cellare vital for survival. The formation of ROS is prevented byan antioxidant system: low molecular mass antioxidants (ascorbicacid, glutathione, tocopherols), enzymes regenerating the reducedforms of antioxidants, and ROS-interacting enzymes such as SOD,peroxidases and catalases. In plant tissues many phenolic compounds(in addition to tocopherols) are potential antioxidants: flavonoids,tannins and lignin precursors may work as ROS-scavenging compounds.Antioxidants act as a cooperative network, employing a seriesof redox reactions. Interactions between ascorbic acid and glutathione,and ascorbic acid and phenolic compounds are well known. Underoxygen deprivation stress some contradictory results on theantioxidant status have been obtained. Experiments on overexpressionof antioxidant production do not always result in the enhancementof the antioxidative defence, and hence increased antioxidativecapacity does not always correlate positively with the degreeof protection. Here we present a consideration of factors whichpossibly affect the effectiveness of antioxidant protectionunder oxygen deprivation as well as under other environmentalstresses. Such aspects as compartmentalization of ROS formationand antioxidant localization, synthesis and transport of antioxidants,the ability to induce the antioxidant defense and cooperation(and/or compensation) between different antioxidant systemsare the determinants of the competence of the antioxidant system.  相似文献   

12.
The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1-14C]butyric acid and [1-14C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [14C]lignoceric acid into primary bile acids was approximately four times higher than that of [14C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo [F. Hashimoto and H. Hayashi (1987) Biochim. Biophys. Acta 921, 142-150]. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [14C]lignoceric acid and [14C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.  相似文献   

13.
Humic acids are known for their overall positive health and productivity effects in animal feeding trials and, controversially, as an aetiological factor of cancer. We tried to assess the in vitro effect of humic acids from a selected source in Slovakia when used at recommended prophylactic dosage. We investigated antioxidant properties, enzymatic and non-enzymatic antioxidant defence system in liver mitochondria and cultured cancer cell lines in vitro. We observed a significant decrease in superoxide dismutase activity after humic acids treatment irrespective of dissolving in dimethyl sulphoxide or direct addition to mitochondria suspension in a respiration medium. Activities of other antioxidant enzymes measured, such as glutathione peroxidase and glutathione reductase, showed no significant differences from the control as well as the reduced glutathione content. Percentage of inhibition by humic acids of superoxide radical indicated lower efficacy compared with that of hydroxyl radical. Survival of six different cancer cells lines indicated that only the acute T lymphoblastic leukaemia cell line was sensitive to the tested humic acids. Despite relatively low solubility in aqueous solutions, humic acids from the selected source participated in redox regulation. By recapturing the radicals, humic acids reloaded the antioxidant defensive mechanism. Results from in vitro study conducted with humic acids from the natural source showed potential of these substances as promising immunity enhancing agents.  相似文献   

14.
Exposure to ethanol at 0 days of development induced changes in total membrane fatty acid composition at 18 days of development. When exposed to ethanol concentrations ranging from 0–743.27μm/kg egg wt, decreased levels of long-chain, unsaturated membrane fatty acids and increased levels of short-chain, saturated membrane fatty acids were observed in embryonic chick brains at 18 days of development. The ratios of unsaturated membrane/saturated membrane fatty acids correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.44 [F = (1, 32) 7.84; P ≤ 0.009] to 0.59 [F = (1, 32) 17.38; P ≤ 0.0002]. The ratios of long-chain/short-chain membrane fatty acids also correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.51 [F = (1, 32) 11.27; P≤ 0.002] to 0.66 [F = (1, 32) 24.40; P ≤ 0.0001]. Cell fractionation studies indicated that the ethanol-induced changes in brain membrane fatty acid composition were restricted to microsomal membranes.  相似文献   

15.
The present study suggests the importance of reactive oxygen species (ROS) and antioxidant metabolites as biochemical signals during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation at saturating light and optimal CO2. Changes in steady-state photosynthesis of pea mesophyll protoplasts monitored in the presence of antimycin A [AA, inhibitor of cytochrome oxidase (COX) pathway] and salicylhydroxamic acid [SHAM, inhibitor of alternative oxidase (AOX) pathway] were correlated with total cellular ROS and its scavenging system. Along with superoxide dismutase (SOD) and catalase (CAT), responses of enzymatic components—ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), glutathione reductase (GR) and non-enzymatic redox components of ascorbate–glutathione (Asc–GSH) cycle, which play a significant role in scavenging cellular ROS, were examined in the presence of mitochondrial inhibitors. Both AA and SHAM caused marked reduction in photosynthetic carbon assimilation with concomitant rise in total cellular ROS. Restriction of electron transport through COX or AOX pathway had differential effect on ROS generating (SOD), ROS scavenging (CAT and APX) and antioxidant (Asc and GSH) regenerating (MDAR and GR) enzymes. Further, restriction of mitochondrial electron transport decreased redox ratios of both Asc and GSH. However, while decrease in redox ratio of Asc was more prominent in the presence of SHAM in light compared with dark, decrease in redox ratio of GSH was similar in both dark and light. These results suggest that the maintenance of cellular ROS at optimal levels is a prerequisite to sustain high photosynthetic rates which in turn is regulated by respiratory capacities of COX and AOX pathways.  相似文献   

16.
Lipid metabolism in various regions of squid giant nerve fiber   总被引:3,自引:0,他引:3  
The purpose of this investigation was to compare the incorporation of radioactivity from various precursors into lipids of different regions of squid giant nerve fiber systems including axoplasm, axon sheath, giant fiber lobes which contain stellate ganglion cell bodies, and the remaining ganglion including giant synapses. To identify the labeled lipids, stellate ganglia including giant fiber lobes and the remaining tissue were first incubated separately with [14C]glucose, [32P]phosphate, [14C]serine, [14C]acetate and [3H]myristate. The radioactivity from glucose, after conversion to glycerol and fatty acids, was incorporated into most lipids, including triacylglycerol, free fatty acids, cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, sphingomyelin and ceramide 2-aminoethylphosphanate [corrected]. The radioactivity from serine was largely incorporated into phosphatidylserine and, to a lesser extent, into other phospholipids, mainly as the base component. The sphingoid bases of ceramide and sphingomyelin were also significantly labeled. Saturated and monounsaturated and, to a lesser extent, polyunsaturated fatty acids of these lipids were synthesized from acetate, glucose and myristate. Among the major lipids, cholesterol was not labeled by any of the radioactive compounds used. Ganglion residues incorporated the most radioactivity in total lipids from either [14C]glucose or [14C]serine, followed by giant fiber lobes and then sheath. Axoplasm incorporated the least. Among various lipids, phosphatidylethanolamine with shorter saturated fatty acids and phosphatidylglycerol contained the most radioactivity from glucose in all regions. Axoplasm was characterized by a higher proportion of glucose radioactivity in ceramide, sphingomyelin and phosphatidylglycerol. Axoplasm and sheath contained a higher proportion of serine radioactivity than did the other two regions in ceramide. Essentially no radioactivity from [14C]galactose was incorporated in any region.  相似文献   

17.
The aim of this study was to investigate effect of dietary omega-3 fatty acid supplementation on the indices of in vivo lipid peroxidation and oxidant/antioxidant status of plasma in rats. The plasma thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels, and activities of xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were studied in male Wistar Albino rats after ingestion of 0.4 g/kg fish oil (rich in omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid) for 30 days and compared to untreated control rats. The rats in the treated group had significantly higher SOD activity (P < 0.001), NO levels (P < 0.01) and decreased TBARS levels (P < 0.05) with respect to controls whereas GSH-Px and XO activities were not significantly different between the groups. None of the measured parameters had significant correlation with each other in both groups. We conclude that dietary supplementation of omega-3 fatty acids may enhance resistance to free radical attack and reduce lipid peroxidation. These results support the notion that omega-3 fatty acids may be effective dietary supplements in the management of various diseases in which oxidant/antioxidant defence mechanisms are decelerated.  相似文献   

18.
Human skin fibroblasts in suspension are able to degrade [1-14C]-labeled alpha- and gamma-methyl branched chain fatty acids such as pristanic and homophytanic acid. Pristanic acid was converted to propionyl-CoA, whereas homophytanic acid was beta-oxidized to acetyl-CoA. Incubation of skin fibroblasts with [1-14C]-labeled fatty acids for longer periods produced radiolabeled carbon dioxide, presumably by further degradation of acetyl-CoA or propionyl-CoA generated by beta-oxidation. Under the same conditions similar products were produced from very long chain fatty acids, such as lignoceric acid. Inclusion of digitonin (> 10 micrograms/ml) in the incubations strongly inhibited carbon dioxide production but stimulated acetyl-CoA or propionyl-CoA production from fatty acids. ATP, Mg2+, coenzyme A, NAD+ and L-carnitine stimulated acetyl-CoA or propionyl-CoA production from [1-14C]-labeled fatty acids in skin fibroblast suspensions. Branched chain fatty acid beta-oxidation was reduced in peroxisome-deficient cells (Zellweger syndrome and infantile Refsum's disease) but they were beta-oxidized normally in cells from patients with X-linked adrenoleukodystrophy (ALD). Under the same conditions, lignoceric acid beta-oxidation was impaired in the above three peroxisomal disease states. These results provide evidence that branched chain fatty acid, as well as very long chain fatty acid, beta-oxidation occurs only in peroxisomes. As the defect in X-linked ALD is in a peroxisomal fatty acyl-CoA synthetase, which is believed to be specific for very long chain fatty acids, we postulate that different synthetases are involved in the activation of branched chain and very long chain fatty acids in peroxisomes.  相似文献   

19.
Because the ability of cells to replace oxidized fatty acids in membrane phospholipids via deacylation and reacylation in situ may be an important determinant of the ability of cells to tolerate oxidative stress, incorporation of exogenous fatty acid into phospholipid by human erythrocytes has been examined following exposure of the cells to t-butyl hydroperoxide. Exposure of human erythrocytes to t-butyl hydroperoxide (0.5-1.0 mM) results in oxidation of glutathione, formation of malonyldialdehyde, and oxidation of hemoglobin to methemoglobin. Under these conditions, incorporation of exogenous [9,10-3H]oleic acid into phosphatidylethanolamine is enhanced while incorporation of [9,10-3H]oleic acid into phosphatidylcholine is decreased. These effects of t-butyl hydroperoxide on [9,10-3H]oleic acid incorporation are not affected by dissipating transmembrane gradients for calcium and potassium. When malonyldialdehyde production is inhibited by addition of ascorbic acid, t-butyl hydroperoxide still decreases [9,10-3H]oleic acid incorporation into phosphatidylcholine but no stimulation of [9,10-3H]oleic acid incorporation into phosphatidylethanolamine occurs. In cells pre-treated with NaNO2 to convert hemoglobin to methemoglobin, t-butyl hydroperoxide reduces [9,10-3H]oleic acid incorporation into phosphatidylcholine by erythrocytes but does not stimulate [9,10-3H]oleic acid incorporation into phosphatidylethanolamine. Under these conditions oxidation of erythrocyte glutathione and formation of malonyldialdehyde still occur. These results indicate that membrane phospholipid fatty acid turnover is altered under conditions where peroxidation of membrane phospholipid fatty acids occurs and suggest that the oxidation state of hemoglobin influences this response.  相似文献   

20.
Nanoparticles have been attracted attention in poultry research due to their low toxicity, higher bio-availability, high surface area with sustained drug release. Dietary supplementation with selenium nanoparticles (Se-NPs) plays a regulatory role in maintaining growth performance, feed conversion ratio (FCR), antioxidant defense as well as microbial control. Se-NPs have emerging importance in modulating intestinal health through the maintenance of beneficial microbes (microflora) as well as the production of short-chain fatty acids (SCFA). Se-NPs regulate intrinsic redox status by scavenging free radicals. The antioxidant potentiality of Se-NPs is influenced by the activation of the seleno-enzymes such as thioredoxin reductase and glutathione peroxidase family (GPx) involved in scavenging of Reactive Oxygen Species (ROS). The emerging significance of Se-NPs on antimicrobial activity has been exploited due to their bio-accumulative effects and biocompatibility potentiality in the cellular systems against poultry pathogens. The present review highlights on growth performance, antioxidant defense, and anti-bacterial potentiality of Se-NPs in poultry and also provide insight into its significance in the poultry industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号