首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primaryhypothesis of this study was that the cough motor pattern is produced,at least in part, by the medullary respiratory neuronal network inresponse to inputs from "cough" and pulmonary stretch receptorrelay neurons in the nucleus tractus solitarii. Computer simulations ofa distributed network model with proposed connections from the nucleustractus solitarii to ventrolateral medullary respiratory neuronsproduced coughlike inspiratory and expiratory motor patterns. Predictedresponses of various "types" of neurons (I-DRIVER, I-AUG, I-DEC,E-AUG, and E-DEC) derived from the simulations were tested in vivo.Parallel and sequential responses of functionally characterizedrespiratory-modulated neurons were monitored during fictive cough indecerebrate, paralyzed, ventilated cats. Coughlike patterns in phrenicand lumbar nerves were elicited by mechanical stimulation of theintrathoracic trachea. Altered discharge patterns were measured in mosttypes of respiratory neurons during fictive cough. The resultssupported many of the specific predictions of our cough generationmodel and suggested several revisions. The two main conclusions were asfollows: 1) TheBötzinger/rostral ventral respiratory group neurons implicated inthe generation of the eupneic pattern of breathing also participate inthe configuration of the cough motor pattern.2) This altered activity ofBötzinger/rostral ventral respiratory group neurons istransmitted to phrenic, intercostal, and abdominal motoneurons via thesame bulbospinal neurons that provide descending drive during eupnea.

  相似文献   

2.
In decerebrate, vagotomized, paralyzed, and ventilated cats, activities of the phrenic nerve and single hypoglossal nerve fibers were monitored. The great majority of hypoglossal neuronal activities were inspiratory (I), discharging during a period approximating that of phrenic. Many were not active at normocapnia but were recruited in hypercapnia or hypoxia. Once recruited, discharge frequencies, which rose quickly to near maximal levels in early to midinspiration, significantly increased with further augmentations of drive. Also, the onset of activities became progressively earlier, compared with phrenic discharge, in hypercapnia or hypoxia. Smaller numbers of hypoglossal fiber activities, having inspiratory-expiratory (I-E), expiratory (E), expiratory-inspiratory (E-I), or tonic discharge patterns, were also recorded. Activities of E, I-E, and those I fibers that became I-E in high drive may underlie the early burst of expiratory activity of the hypoglossal nerve. It is concluded that the firing and recruitment patterns of hypoglossal neurons differ from those of phrenic motoneurons. However, responses to chemoreceptor stimuli are similar among the two neuronal groups.  相似文献   

3.
The relative contribution of phasic and tonic excitatory synaptic drives to the augmenting discharge patterns of inspiratory (I) neurons within the ventral respiratory group (VRG) was studied in anesthetized, ventilated, paralyzed, and vagotomized dogs. Multibarrel micropipettes were used to record simultaneously single-unit neuronal activity and pressure microejected antagonists of GABAergic, glycinergic, N-methyl-D-aspartate (NMDA) and non-NMDA glutamatergic, and cholinergic receptors. The discharge patterns were quantified via cycle-trigger histograms. The findings suggest that two-thirds of the excitatory drive to caudal VRG I neurons is tonic and mediated by NMDA receptors and the other third is ramp-like phasic and mediated by non-NMDA receptors. Cholinergic receptors do not appear to be involved. The silent expiratory phase is produced by phasic inhibition of the tonic activity, and approximately 80% of this inhibition is mediated by gamma-aminobutyric acid receptors (GABA(A)) and approximately 20% by glycine receptors. Phasic I inhibition by the I decrementing neurons does not appear to contribute to the predominantly step-ramp patterns of these I neurons. However, this decrementing inhibition may be very prominent in controlling the rate of augmentation in late-onset I neurons and those with ramp patterns lacking the step component.  相似文献   

4.
The purpose of this study was to describe the distribution and activity pattern of respiratory neurons located in the ventrolateral medulla (VLM) of the dog. Spike activity of 129 respiratory neurons was recorded in 23 ketamine-anesthetized spontaneously breathing dogs. Pontamine blue dye was used to mark the location of each neuron. Most VLM neurons displaying respiratory related spike patterns were located in a column related closely to ambigual and retroambigual nuclei. Both inspiratory and expiratory neurons were present with inspiratory units being grouped more rostrally. The predominant inspiratory neuron firing pattern was "late" inspiratory, although eight "early" types were located. All expiratory firing patterns were the late expiratory variety. Each neuron burst pattern was characterized by determining burst duration (BD), spikes per burst (S/B), peak frequency (PF), time to peak frequency (TPF), rate of rise to peak frequency (PF/TPF), and mean frequency. CO2-induced minute ventilation increases were associated with decreases in BD and TPF and increases in PF, S/B, and PF/TPF. In 11 experiments the relative influences of vagotomy and tracheal occlusion on late inspiratory units were compared. Tracheal occlusion increased late inspiratory BD and S/B but did not alter PF/TPF. Vagotomy increased BD and S/B beyond those obtained by tracheal occlusion and, in some neurons, decreased the PF/TPF. We conclude that the location of respiratory units in the VLM of the dog is similar to that in other species, the discharge pattern of VLM respiratory units is similar to those in cat VLM, and vagotomy and tracheal occlusion affect discharge patterns differently.  相似文献   

5.
A mathematical model of the medullary respiratory oscillator, composed of two mutually inhibiting populations (inspiratory and expiratory) of computer-simulated neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons. Neuronal coupling is such that either the inspiratory or expiratory population alone is capable of cyclic activity. Weak inhibitory connections between inspiratory and expiratory populations provide satisfactory reciprocating activity independent of the natural frequency of either population alone. Initiation and persistence of rhythmic activity is dependent on a diffused noncyclic excitatory input. Vagal discharge, simulated by phasic inhibition of inspiratory neurons, results in increased respiratory frequency with decreased inspiratory activity. In the absence of simulated vagal discharge, uniform facilitation of synaptic connections increases averaged activities of inspiratory and expiratory populations, with minor effect on frequency. In the presence of simulated vagal discharge, facilitation of synaptic connections increases both frequency and amplitude. The simulated effects of synaptic facilitation, with and without vagal discharge, mimic the physiological response to CO2 in the intact and vagotimized animal.  相似文献   

6.
Respiration cycles through three distinct phases (inspiration, postinspiration, and expiration) each having corresponding medullary cells that are excited during one phase and inhibited during the other two. Laryngeal stimulation is known to induce apnea in newborn animals, but the cellular mechanisms underlying this effect are not known. Intracellular recording of ventral respiratory group neurons was accomplished in intact anesthetized, paralyzed, and mechanically ventilated piglets. Apnea was induced by insufflation of the larynx with ammonia-saturated air, smoke, or water. Laryngeal insufflation induced phrenic nerve apnea, stimulation of postinspiratory neurons, and stable membrane potentials in inspiratory and expiratory cells consistent with postinspiratory inhibition. Usually the membrane potential of each neuronal type cycled through an expiratory level before onset of the first recovery breath. Variants of the apnea response, probably reflecting the aspiration reflex or sniffing, sneezing, coughing, and swallowing, were also observed. These latter patterns showed oscillation between inspiration and postinspiration without an apparent intervening stage II expiratory phase. However, stage II expiratory activity always preceded onset of the first ramp inspiration after such a pattern. These findings suggest that activation of postinspiratory mechanisms causes profound alterations in the respiratory pattern and that stage II expiration importantly modulates recovery of ramp inspiratory activity. The mechanism of this latter effect may be inhibition of early inspiratory neurons with consequent postinhibitory rebound.  相似文献   

7.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

8.
Mu-opioid receptor agonists depress tidal volume, decrease chest wall compliance, and increase upper airway resistance. In this study, potential neuronal sites and mechanisms responsible for the disturbances were investigated, dose-response relationships were established, and it was determined whether general anesthesia plays a role. Effects of micro-opioid agonists on membrane properties and discharges of respiratory bulbospinal, vagal, and propriobulbar neurons and phrenic nerve activity were measured in pentobarbital-anesthetized and unanesthetized decerebrate cats. In all types of respiratory neurons tested, threshold intravenous doses of the micro-opioid agonist fentanyl slowed discharge frequency and prolonged duration without altering peak discharge intensity. Larger doses postsynaptically depressed discharges of inspiratory bulbospinal and inspiratory propriobulbar neurons that might account for depression of tidal volume. Iontophoresis of the micro-opioid agonist DAMGO also depressed the intensity of inspiratory bulbospinal neuron discharges. Fentanyl given intravenously prolonged discharges leading to tonic firing of bulbospinal expiratory neurons in association with reduced hyperpolarizing synaptic drive potentials, perhaps explaining decreased inspiratory phase chest wall compliance. Lowest effective doses of fentanyl had similar effects on vagal postinspiratory (laryngeal adductor) motoneurons, whereas in vagal laryngeal abductor and pharyngeal constrictor motoneurons, depression of depolarizing synaptic drive potentials led to sparse, very-low-frequency discharges. Such effects on three types of vagal motoneurons might explain tonic vocal fold closure and pharyngeal obstruction of airflow. Measurements of membrane potential and input resistance suggest the effects on bulbospinal Aug-E neurons and vagal motoneurons are mediated presynaptically. Opioid effects on the respiratory neurons were similar in anesthetized and decerebrate preparations.  相似文献   

9.
非NMDA受体参与双相呼气和吸气神经元电活动的调节   总被引:1,自引:1,他引:0  
Pan BX  Wu ZH 《生理学报》2001,53(2):89-92
在新生大鼠延髓脑片上同步记录舌下神经根和双相呼气神经元/吸气神经元单位的放电活动,并在灌流的改良Kredbs液中先后加以非NMDA受体的激动剂KA和拮抗剂DNQX,观察对神经元单位放电的影响,以进一步探讨非NMDA受体在对双相呼气神经元之间交互兴奋和吸气神经元兴奋性突触输入中的作用,结果表明,使用非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和蜂频率都明显增大,吸气神经元中期放电的频率和非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和峰频率都明显增大,吸气神经元中期放电的频率和峰频率也显著增大,而早期和晚期放电的频率无明显改变,用相应拮抗剂以后,上述效应明显被抑制,结果提示,非NMDA受体参与了双相呼气神经元之间的交互兴奋作用,并且也介导了吸气神经元的兴奋性突触输入/  相似文献   

10.
We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.  相似文献   

11.
延髓面神经后核内侧区呼吸相关神经元的放电形式   总被引:9,自引:2,他引:7  
吴中海  张枫桐 《生理学报》1997,49(4):389-394
实验用家兔和SD大鼠,氨基甲酸乙酯麻醉。记录膈神经或膈肌放电作为呼吸的指标。在延髓面神经后核内侧区细胞外记录呼吸相关神经元放电,在家兔所记录到的249个RRNs中,吸气神经元118个,呼气神经元91个,呼吸跨时相神经元40个。在大鼠所记录到的153个RRNs中,吸气神经元68个,呼气神经元55个,呼吸跨时相神经元30个,在mNRF分布有较多的呼气-呼气跨时相神经元,这类神经元放电总是先天膈神经吸气  相似文献   

12.
Chemical lesions in the medullary raphe nuclei region influence cough. This study examined whether firing patterns of caudal medullary midline neurons were altered during cough. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. Cough-like motor patterns (fictive cough) in phrenic and lumbar nerves were elicited by mechanical stimulation of the intrathoracic trachea. Discharge patterns of respiratory and nonrespiratory-modulated neurons were altered during cough cycles (58/133); 45 increased and 13 decreased activity. Fourteen cells changed firing rate during the inspiratory and/or expiratory phases of cough. Altered patterns in 43 cells were associated with the duration of, or extended beyond, the cough episodes. The different response categories suggest that multiple factors influence the discharge patterns during coughing: e.g., respiratory-modulated and tonic inputs and intrinsic connections. These results suggest involvement of midline neurons (i.e., raphe nuclei) in the cough reflex.  相似文献   

13.
Yan HX  Zhang CW  Zheng Y 《生理学报》2004,56(6):665-670
实验选用健康成年SD大鼠,观察电刺激面神经核对前包钦格复合体(pre-—Boetzinger complex,PBC)呼吸神经元(RNs)放电活动的影响,并观察微电泳6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)、荷包牡丹碱(BIC)、士的宁(Stry)和阿托品(Atr)对电刺激面神经核引起的PBCRNs放电变化的拮抗效应,以进一步探讨面神经核是否参与呼吸调节及其可能的神经机制。在12只面运动神经元逆行溃变大鼠同侧PBC内共记录到各类RNs116个,电刺激溃变侧面神经核时,前吸气(Pre-I)神经元(24/26个)和吸气(I)神经元(30/35个)主要表现为兴奋,呼气(E)神经元(20/22个)和吸气-呼气(I-E)跨时相神经元(28/33个)表现为抑制。CNQx可完全或部分拮抗电刺激面神经核对Pre-I(18/24)和I(23/27)神经元的兴奋效应;Stry可拮抗电刺激面神经核对Pre-I(12/18)和I(14/23)神经元的瞬时抑制效应以及对I-E(20/28)和E(9/16)神经元的抑制效应;BIC可拮抗电刺激面神经核对I—E(22/25)和E(9/9)神经元的抑制效应;微电泳Atr对各类RNs的放电变化无明显作用。这些结果表明,面神经核非运动神经元可能通过向PBC的纤维投射,以Glu、GABA和Gly为神经递质或调质,调节PBC RNs的活动,从而参与对呼吸运动的调节。  相似文献   

14.
The effects of rhythmical low- and high-frequency stimulation of specific nonsensory anterior ventral and associative mediodorsal thalamic nuclei (AV and MD, respectively) on the activity of neuronal units in the medullary ventral respiratory nucleus were studied in acute experiments on anesthetized, spontaneously breathing cats. Both inhibitory and excitatory influences on spike activity of inspiratory and expiratory neurons were found, with suppression effects being markedly predominant. Thresholds for inspiratory neuronal responses were lower as compared with those for expiratory cells. Electrical AV stimulation mainly produced an inhibitory effect on the activity of nonspecific reticular neurons (without respiratory activity), whereas during MD stimulation activating effects on these neurons dominated. Possible mechanisms underlying the realization of thalamorespiratory influences are discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 218–223, May–June, 1993.  相似文献   

15.
The pre-B?tzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca(2+) imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a x20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.  相似文献   

16.
Takeda M  Matsumoto S 《Life sciences》2002,71(22):2681-2690
To clarify whether GABAergic or glycinergic transmission alters the activity of inspiratory neurons during spontaneous augmented breaths, we recorded the single unit activity from inspiratory neurons in the dorsal and ventral respiratory groups in the medulla of pentobarbital anesthetized rats and applied GABA(A) and glycine receptor agonists by iontophoresis using multibarrel microelectrodes. The spontaneous augmented breath was divided into two different phases; the first phase (phase I) resembled a normal inspiration but the second phase (phase II) indicated a marked increase in diaphragm electromyogram activity. During application of either muscimol or glycine, the discharge of inspiratory neurons during the phase I of spontaneous augmented breaths was suppressed, but the augmenting discharge of the phase II did not change significantly in any cell type of the neurons (I-augmenting, I-decrementing and I-other). These results suggested that the excitatory inputs to inspiratory neurons during the phase II of augmented breaths may not be significantly influenced by the activation of either GABA(A) receptors or glycine receptors.  相似文献   

17.
Changes evoked by mechanical stimulation of the relevant parts of the respiratory tract in the activity of inspiratory and expiratory neurones in the ventral respiratory group of the medulla oblongata, and in pleural pressure and the diaphragmatic electromyogram, were determined during cough, sneeze and the aspiration and expiration reflexes in 17 anaesthetized (but not paralysed) cats. The results of 72 tests of elicitation of the given reflexes showed that: Compared with the control inspiration, both the mean and the maximum discharge frequency of spontaneously active inspiratory neurones rose during the inspiratory phase of cough, sneeze and the aspiration reflex. Regular recruitment of new inspiratory units was also observed in the inspiratory phase of cough and the aspiration reflex. Compared with the control expiration, both the mean and the maximum discharge frequency of spontaneously active expiratory neurones rose during the cough, sneeze and expiration reflex effort. Recruitment of latent expiratory neurones was always observed in the expulsive phase of the given respiratory processes. The recruitment of latent expiratory neurones was accompanied by reciprocal inhibition of the activity of inspiratory units and recruitment of latent inspiratory neurones by inhibition of the activity of expiratory units and recruitment of latent inspiratory neurones by inhibition of the activity of expiratory units. Regular recruitment of the same expiratory neurones in all expulsive respiratory processes, together with the similar incidence of inspiratory neurones in the inspiratory phase of sneeze and the aspiration reflex, indicates that they are "nonspecific" in character.  相似文献   

18.
Wang JL  Wu ZH  Wang NQ 《生理学报》2005,57(1):91-96
实验旨在探讨腺苷A1受体在对基本呼吸节律调制中的可能作用。制作新生大鼠离体延髓脑片标本,主要包含面神经后核内侧区(themedial region of the nucleus retrofacialis,mNRF),并保留完整的舌下神经根。以改良Kreb‘s液灌流脑片,记录mNRF吸气神经元的电活动,并同步记录舌下神经根呼吸节律性放电(respiratory rhythmical discharge activity,RRDA)。在灌流液中先分别单独给予腺苷A1受体的特异性拮抗剂8-环戊-1,3-二丙基黄嘌呤(8-cyclopenty 1-1,3-dipropylxanthine,DPCPX)和特异性激动剂R-苯异丙基-腺苷(R-phenylisopropyl-adenosine,R-PIA);再分别先后给予R-PIA和R-PIA DPCPX,观察RRDA和吸气神经元电活动的变化。结果显示,给予腺苷A1受体拮抗剂DPCPX后,呼气时程和呼吸周期明显缩短,吸气神经元中期放电的频率和峰频率显著增大;给予腺苷Al受体激动剂R-PIA后,吸气时程、积分幅度和吸气神经元中期放电的频率和峰频率均显著降低,呼吸周期明显延长,且R-PIA的呼吸抑制作用可部分地被DPCPX逆转。实验结果提示,腺苷A1受体可能通过介导吸气神经元的抑制性突触输入参与节律性呼吸的调制。  相似文献   

19.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

20.
Xing GG  Fan XL  Song XA  Li Q 《生理学报》2000,52(6):491-496
实验用63只麻醉、制动、切断双侧颈迷走神经、人工呼吸的家兔,以延髓呼吸相关神经元(RRN)和膈神经放电(Phr.D)作为呼吸观测指标,观察了股动脉注射琥珀胆碱(Sch)诱发的肌梭传入活动对呼吸的影响。结果显示:(1)股动脉注射Sch可产生明显的呼吸易化作用,主要表现为吸气时程(Ti)延长、呼气时程(Te)缩短不明显,Ti/Te比值增加以及呼吸频率(RF)变化不在,称为吸气延长效应;或Te缩短,Ti  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号