首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the Baltic Sea area, the cladoceran Daphnia magna is commonly found in brackish water rockpools and it has been suggested that salinity is one of the niche dimensions that affects the distribution of the species. The salinity tolerance of D. magna was studied both in physiological and life history experiments. The experimental salinities were freshwater, 4S and 8S. The highest respiration and ammonium excretion rates were measured in the freshwater treatment with decreasing respiration and ammonium excretion rates at higher salinities. The lowest O/N ratio (oxygen consumption to ammonium excretion), describing the metabolic status of an organism, was obtained at 8S, although the only significant differences were detected when comparing to 4S treatments. Individual growth rate, reproductive output and population growth rate were highest at 4S. At 8S growth and reproduction were reduced as compared to freshwater and 4S. The life history parameters in the performed experiments indicated higher fitness (expressed as r) as well as more favourable conditions for growth and reproduction at 4S, whereas the O/N ratio was more difficult to interpret and, in this case, gave a less clear picture of the salinity influence.  相似文献   

2.
Altered temperatures affect insects’ life history traits, such as development period and fecundity, which ultimately determine population growth rates. Understanding insects’ thermal biology is therefore integral to population forecasting and pest management decision‐making such as when to utilise crop spraying or biological control. Aphids are important crop pests in temperate regions, causing considerable yield losses. The aphid thermal‐biology literature is, however, heavily biased towards the effects of rising mean temperatures, whereas the effects of fluctuating, extreme climatic events (e.g., heat waves and sub‐zero cold periods) are largely overlooked. This study assessed the effects of laboratory‐simulated heat waves and sub‐zero cold periods on the survival, development period, and fecundity of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae: Microsiphini), in addition to assessing maternal effects on the birth weight and development period of the offspring of exposed individuals. Exposure to heat stress periods (total of 16 h at 30 °C) significantly reduced aphid fecundity and increased physiological development period (in day‐degrees) resulting in a reduced population growth rate. Cold exposure (total of 1.33 h at ?15 °C) reduced population growth rate due to an elongated development period (in days), but did not affect fecundity or physiological development period (in day‐degrees). Both cold and heat stress significantly reduced aphid survival. Maternal experience of heat stress reduced nymphal birth weight although nymphal development period was not affected by either cold or heat stress. The results suggest that including the effects of fluctuating, extreme temperature events on aphid life history in population forecast models is likely to be of great importance to pest management decision‐making. The demonstration of maternal effects on birth weight also suggests that cross‐generational effects of heat waves on population growth rates could occur.  相似文献   

3.
The effects of chemicals released by fish and Chaoborus larvae on some life history traits in Daphnia pulex were studied in an in situ enclosure experiment. The mean size of Daphnia individuals was smaller in the presence of fish-released cues. Also the minimal size of an egg bearing female in the presence of fish exudates was smaller than in the population exposed to the chemicals released by Chaoborus larvae as well as in the control population. Fish-released chemicals caused the increase in clutch size in Daphnia. There were no statistically significant differences between the studied life history parameters of the control and Chaoborus treatments. The results are discussed in reference to recent laboratory research.  相似文献   

4.
Effects of turbidity on life history parameters of two species of Daphnia   总被引:1,自引:0,他引:1  
SUMMARY. 1. Life table experiments were carried out in a range of turbidities on D. pulex , representing a 'clear-water', and on D. barbata , representing a 'turbid-water' species.
2. In contrast to predictions based on seasonal occurrence patterns, D. pulex had a higher intrinsic rate of increase ( r c)s over most of the turbidity range than D. barbata. Consistent differences in life history between the two species were found, but life history characteristics were rather insensitive to turbidity levels. Although turbidity per se appears to have little direct effect on life history parameters, it could influence the seasonal succession of these two species by interacting with other factors.
3. It is suggested that visual predation by fish rather than turbidity per se probably influenced the seasonality of Daphnia species. During the warmer months, selective removal of D. pulex by visually foraging fishes may allow D. barbata to gain dominance. Effects of temperature and nutrition also merit further study.  相似文献   

5.
Many pelagic animal species in the marine environment and in lakes migrate to deeper water layers before sunrise and return around sunset. The amplitude of these diel vertical migrations (DVM) varies from several hundreds of metres in the oceans to approx. 5–20 m in lakes. DVM can be studied from a proximate and an ultimate point of view. A proximate analysis is intended to reveal the underlying behavioural mechanism and the factors that cause the daily displacements. The ultimate analysis deals with the adaptive significance of DVM and the driving forces that were responsible for the selection of the traits essential to the behavioural mechanism. The freshwater cladoceran Daphnia is the best studied species and results can be used to model migration behaviour in general. Phototaxis in Daphnia spp., which is defined as a light-oriented swimming towards (positive phototaxis) or away (negative phototaxis) from a light source, is considered the most important mechanism basic to DVM. A distinction has been made between primary phototaxis which occurs when light intensity is constant, and secondary phototaxis which is caused by changes in light intensity. Both types of reaction are superimposed on normal swimming. This swimming of Daphnia spp. consists of alternating upwards and downwards displacements over small distances. An internal oscillator seems to be at the base of these alternations. Primary phototaxis is the result of a dominance of either the upwards or the downwards oscillator phase, and the direction depends on internal and external factors: for example, fish-mediated chemicals or kairomones induce a downwards drift. Adverse environmental factors may produce a persistent primary phototaxis. Rare clones of D. magna have been found that show also persistent positive or negative primary phototaxis and interbreeding of the two types produces intermediate progeny: thus a genetic component seems to be involved. Also secondary phototaxis is superimposed on normal swimming: a continuous increase in light intensity amplifies the downwards oscillator phase and decreases the upwards phase. A threshold must be succeeded which depends on the rate and the duration of the relative change in light intensity. The relation between both is given by the stimulus strength versus stimulus duration curve. An absolute threshold or rheobase exists, defined as the minimum rate of change causing a response if continued for an infinitely long time. DVM in a lake takes place during a period of 1-5-2 h when light changes are higher than the rheobase threshold. Accelerations in the rate of relative increase in light intensity strongly enhance downwards swimming in Daphnia spp. and this enhancement increases with increasing fish kairomone and food concentration. This phenomenon may represent a ‘decision-making mechanism’ to realize the adaptive goal of DVM: at high fish predator densities, thus high kairomone concentrations, and sufficiently high food concentrations, DVM is profitable but not so at low concentrations. Body axis orientation in Daphnia spp. is controlled with regard to light-dark boundaries or contrasts. Under water, contrasts are present at the boundaries of the illuminated circular window which results from the maximum angle of refraction at 48–9° with the normal (Snell's window). Contrasts are fixed by the compound eye and appropriate turning of the body axis orients the daphnid in an upwards or an obliquely downwards direction. A predisposition for a positively or negatively phototactic orientation seems to be the result of a disturbed balance of the two oscillators governing normal swimming. Some investigators have tried to study DVM at a laboratory scale during a 24 h cycle. To imitate nature, properties of a natural water column, such as a large temperature gradient, were compressed into a few cm. With appropriate light intensity changes, vertical distributions looking like DVM were obtained. The results can be explained by phototactic reactions and the artificial nature of the compressed environmental factors but do not compare with DVM in the field. A mechanistic model of DVM based on phototaxis is presented. Both, primary and secondary phototaxis is considered an extension of normal swimming. Using the light intensity changes of dawn and the differential enhancement of kairomones and food concentrations, amplitudes of DVM could be simulated comparable to those in a lake. The most important adaptive significance of DVM is avoidance of visual predators such as juvenile fish. However, in the absence of fish kairomones, small-scale DVMs are often present, which were probably evolved for UV-protection, and are realized by not enhanced phototaxis. In addition, the ‘decision-making mechanism’ was probably evolved as based on the enhanced phototactic reaction to accelerations in the rate of relative changes in light intensity and the presence of fish kairomones.  相似文献   

6.
Diel vertical migration (DVM) is a complex and dynamic behaviour against predation because the reaction of migrating organisms to light intensity plays a primary role, but is modified by other factors. In the relatively shallow but thermally stratified Lake Eymir, Daphnia pulex de Geers utilized vertical refugia afforded by the hypolimnion during both day and night. Differences in general vulnerability to fish predation determined the differences in their mean residence depths (MRDs) of different population categories such as most conspicuous and vulnerable individuals of adult with eggs inhabited the deepest depth, whereas juveniles stayed close the thermocline. In late spring, profoundly high amplitude of displacement within the hypolimnion, probably due to the hypolimnion being well-lit and relatively well-oxygenated for the fish and rather unsafe for the large-sized daphnids, was recorded. Therefore, the large-sized daphnids daytime refuge was close to the bottom whereas at night they moved upward to benefit from warmer water temperature along with food availability in the presence of fish predation but still remained below the thermocline. In summer, the insignificant amplitude of the hypolimnetic, which later became epilimnetic, displacements were probably due to the near-anoxic condition found below the thermocline. This might have deterred the fish, thus providing a safer refuge for daphnids in the below thermocline, which afterwards became the above thermocline. Low oxygen availability was regarded as the summer proximate factor. The abundant food and warmer water conditions found in the below/above thermocline also accounted for absence of DVM in summer. Consequently, this study suggests that DVM by Daphnia is an adaptation that is plastic to changing environmental conditions.  相似文献   

7.
8.
The effect of incubation temperature (2, 4, 6, 8 and 10° C) on haddock Melanogrammus aeglefinus development and growth during the embryonic period and in subsequent ontogeny in a common post‐hatch thermal environment (6° C) was investigated. Hatching times were inversely proportional to incubation temperature and ranged from 20·3 days at 2° C to 9·1 days at 10° C. Growth rates were directly proportional to incubation temperature during both the embryonic and larval periods. There was a significant decline in growth rates following hatch in all temperature groups. Compared to the endogenously feeding embryos, growth rates in the exogenous period declined by 4·4‐fold at 4° C to 3·9‐fold at 8° C, indicative of the demarcation between the endogenous and exogenous feeding periods. Yolk utilization varied from 17 days at 2° C to 6 days at 10° C and followed a three‐stage sigmoidal pattern with the initial lag period inversely proportional to incubation temperature. Time to 50% yolk depletion varied inversely with temperature but occurred 1–1·5 days post‐hatch at all temperatures. Additionally, the period between 10 and 90% yolk depletion also decreased with increased temperature. Overall developmental rate was sequential with and directly proportional (2·3‐fold increase) to incubation temperature while the time spent in each developmental stage was inversely proportional to temperature. Larger embryos tended to be produced at lower temperatures but this pattern reversed following hatch, as larvae from higher temperature groups grew more rapidly than those from other temperature groups. Larvae from all temperatures achieved a similar length (c.total length 4·5 mm) upon complete yolk absorption. The study demonstrated the significant impact that temperature has upon developmental and growth rates in both endogenous and exogenous feeding periods. It also illustrated that temperature changes during embryogenesis had significant and persistent effects on growth in subsequent ontogeny.  相似文献   

9.
SUMMARY. 1. The life history responses of two common and three rare Daphnia magna clones to constant conditions of temperature and photoperiod were investigated, and intraspecific variation in the genes controlling growth, survivorship and reproduction was observed.
2. Rearing temperature had a significant effect on growth, survivorship and on all reproductive parameters measured (generation time, intrinsic rate of increase and male production), while photoperiod influenced significantly only survivorship and male production.
3. The maximum proportion of male offspring was produced at a low temperature (14°C) and at a mid-range photoperiod (L:D16:8).
4. The likely mechanism whereby clones with different life histories are maintained in the population is discussed.  相似文献   

10.
Abstract. The aim of this study is to clarify the deleterious effects of long‐term diapause on survival, postdiapause number of offspring and longevity in two populations of Kanzawa spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae), which were collected from Orixa japonica (Rutaceae) and Hydrangia hirta (Saxifragaceae) in Kyoto Prefecture, Japan. As the chilling period lengthens, the rate of surviving females declines more steeply in the Orixa population than the Hydrangea population. In the Orixa population, the offspring numbers of diapausing females chilled for 30 or 90 days are not significantly different from those of the parental generation, whereas they decrease to approximately one‐half that of the parental generation in the Hydrangea population. The postdiapause longevity in the 30‐ or 90‐day chilling treatments does not shorten significantly compared with that of parental generation in the Orixa population, but the longevity of the Hydrangea population declines significantly after these chilling periods. These results suggest that deteriorating effects of diapause act in a quite different manner in the two populations. A possible mechanism generating such a difference is discussed in view of trade‐off between the maintenance of body conditions and survival during hibernation.  相似文献   

11.
12.
1. This study compares the effects of four toxic strains of Microcystis aeruginosa on tropical and temperate Cladocera. Survival was tested in acute toxicity experiments using Microcystis alone or in mixtures with the edible green algae Ankistrodesmus falcatus. The effect of chronic exposure on population growth was estimated in life‐table experiments by varying the proportion of Microcystis and the green alga. Nutritional deficiency was assessed using a non‐toxic cyanobacterium in a zooplankton growth experiment. Feeding inhibition was tested using a C‐labelled green alga as a tracer in mixtures with toxic Microcystis.
2. Toxicity varied consistently between Microcystis strains, while sensitivity varied consistently between cladoceran species. However, no relationship was found between sensitivity and geographical origin or cladoceran body size. Two small‐bodied cladocerans from the same tropical lake, Ceriodaphnia cornuta and Moinodaphnia macleayi, were the least sensitive and most sensitive species, respectively.
3. Surprisingly, two small tropical cladocerans survived longer without food than did three large Daphnia species and a third small tropical species.
4. Each of the three tropical Microcystis strains strongly reduced the population growth rate (little ‘r’) and reproductive output of each cladoceran, this reduction being proportional to the percentage of toxic cells in the diet.
5. As the sole food source, the non‐toxic cyanobacterium, Synechococcus elongatus, supported poor growth in M. macleayi. The nutritional deficiency was overcome when Synechococcus was mixed with either Ankistrodesmus or an emulsion rich in omega‐3 fatty acids.
6. Microcystis inhibited the feeding rate of two cladocerans, even when it comprised only 5% of a mixture with the green algae A. falcatus.
7. Differences in sensitivity to the toxic cyanobacterium appear to be associated with differences in life history between the cladoceran species rather than differences between tropical and temperate taxa. Slow‐growing species that are resistant to starvation appear less sensitive to toxic Microcystis than fast‐growing species, which also tend to die more quickly in the absence of food.  相似文献   

13.
Life history shifts in daphnids in response to fish infochemicalsare generally interpreted as an adaptive response to positivesize-selective predation. This interpretation does, however,not hold for larval and small juvenile planktivorous fish, whichdue to gape limitation, feed on small and medium sized prey.In a life table experiment we show that daphnids exposed toinfochemicals excreted by small gape-limited perch and largerperch changed their life history in the same direction, irrespectiveof the contrasting size-selection of the fish. However, responsesto fish infochemicals were strongly influenced by food conditionsfor daphnids. In the high food treatments size at maturity wasin the presence of fish infochemicals, whereas age at maturityremained unchanged. Under low food conditions, size at maturitywas generally smaller compared with the high food situation,but unaffected by fish infochemicals. By contrast, age at maturity,which was increased at low food levels, was significantly lowerin fish treatments compared with the control. We conclude thatlife history responses of daphnids to gape-limited fish canindeed be maladaptive, but only in situations of high food availability.This combination of factors is, however, rather unlikely becausegape-limited fish usually occur in late spring during the clearwater phase when daphnids are severely food limited. We thushypothesize that the costs of this maladaptive response undernegative size-selective predation will be low under field conditionsand the selective advantage under positive size-selective predationlater in the season will outweigh these costs.  相似文献   

14.
Little is known about how fishes and other non-calcifying marine organisms will respond to the increased levels of dissolved CO2 and reduced sea water pH that are predicted to occur over the coming century. We reared eggs and larvae of the orange clownfish, Amphiprion percula, in sea water simulating a range of ocean acidification scenarios for the next 50–100 years (current day, 550, 750 and 1030 ppm atmospheric CO2). CO2 acidification had no detectable effect on embryonic duration, egg survival and size at hatching. In contrast, CO2 acidification tended to increase the growth rate of larvae. By the time of settlement (11 days post-hatching), larvae from some parental pairs were 15 to 18 per cent longer and 47 to 52 per cent heavier in acidified water compared with controls. Larvae from other parents were unaffected by CO2 acidification. Elevated CO2 and reduced pH had no effect on the maximum swimming speed of settlement-stage larvae. There was, however, a weak positive relationship between length and swimming speed. Large size is usually considered to be advantageous for larvae and newly settled juveniles. Consequently, these results suggest that levels of ocean acidification likely to be experienced in the near future might not, in isolation, significantly disadvantage the growth and performance of larvae from benthic-spawning marine fishes.  相似文献   

15.
Spaak  Piet  Ringelberg  Joop 《Hydrobiologia》1997,360(1-3):177-185
During the first few weeks of a recurring seasonalperiod of diel vertical migration in Lake Maarsseveen(The Netherlands), part of the hybrid Daphniagaleata × hyalina population migrated, whileanother part remained in the epilimnion. In theepilimnion, 0+ perch prey upon daphnids duringdaytime. Gradually, the number of adult Daphniain the epilimnion decrease until the epilimnion isnearly devoid of daphnids. The population as a wholemay decrease, as in 1991, or may increase asin 1992. Genotype composition, as determined byallozyme analysis, changed substantially within afortnight in 1992, and one genotype became dominant.Our data are in agreement with the hypothesis thatpredation on different genotypes (clones)occurs during the beginning of a seasonal period ofdiel vertical migration, though our data do not allowto exclude alternativeexplanations.  相似文献   

16.
Effects of temperature on life history variables in perch   总被引:2,自引:0,他引:2  
Population structure, recruitment, mortality, life expectancy, age at maturity, gonad development, fecundity, net reproductive rate and energy storage were studied in a perch population exposed to thermal discharge. The experiment was conducted during 1978–1990 in an artificial enclosure at a nuclear power plant on the Baltic Sea coast. Abundance increased after the plant started operating, although the proportion of larger perch dropped to a low level. Recruitment improved, but adult mortality increased. This effect was accentuated as the fishes matured very early and at a very small size, reducing their ability to support a growing gonad in high winter temperatures. During the spawning period, condition dropped to very low levels accompanied by increased mortality. Surviving fish delayed the next spawning by one or more years and reduced their fecundity. Body condition thus improved in large perch at the end of the study period. Life-time fecundity was reduced, and reproductive performance shifted to youner ages.  相似文献   

17.
Reichwaldt ES  Wolf ID  Stibor H 《Oecologia》2004,141(3):411-419
Diel vertical migration (DVM) of herbivorous zooplankton is a widespread behavioural phenomenon in freshwater ecosystems. So far only little attention has been paid to the impact of DVM on the phytoplankton community in the epilimnion. Some theoretical models predict that algal population growth in the epilimnion should depend on the herbivores migration and grazing patterns: even if migrating zooplankton consume the same total amount of algae per day in the epilimnion as non-migrating zooplankton, nocturnal grazing should result in enhanced algal growth and favour algal species with high intrinsic growth rates over species with lower intrinsic growth rates. To test these hypotheses we performed experiments in which several algal species were confronted with different feeding regimes of Daphnia. In the experiments algal growth did not only depend on the absolute time of grazing but was comparatively higher when grazing took place only during the night, even when the grazing pressure was the same. Furthermore, algal species with higher intrinsic growth rates had higher advantages when being grazed upon only discontinuously during the night than algal species with a smaller intrinsic growth rate. The grazing pattern itself was an important factor for relative algal performance.  相似文献   

18.
Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6 °C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25 °C for 2 h and 20 °C for 1 or 2 h. A subset of pupae at the FTR base temperature of 6 °C exhibited continuous gas exchange and, once ramped to 20 or 25 °C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6 °C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO2 emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15 °C during the FTR high temperature pulse; and 4) a two hour pulse at 25 °C doubled the number of CO2 peaks observed during the FTR pulse as compared to a two hour pulse at 20 °C.  相似文献   

19.
The trade‐off between gametes and soma is central to life history evolution. Oosorption has been proposed as a mechanism by which females can redirect nutrients invested in oocytes into survival when conditions for reproduction are poor. Although positive correlations between oocyte degradation and lifespan have been documented in oviparous insects, the adaptive significance of this process in species with more complex reproductive biology has not been explored. Further, environmental condition is a multivariate state, and combinations of environmental stresses may interact in unpredictable ways. Previous work on the ovoviviparous cockroach, Nauphoeta cinerea, revealed that females manipulated to mate late relative to sexual maturation experience age‐related loss in fecundity because of loss of viable oocytes via apoptosis. This loss in fecundity is correlated with a reduction in female mate choice. Food deprivation while mating is delayed further increases levels of oocyte apoptosis, but the relationship between starvation‐induced apoptosis and life history are unknown. To investigate this, virgin females were either fed or starved from eclosion until provided with a mate at a time known to be suboptimal for fertility. Following mating, females were fed for the duration of their lifespan. We measured lifetime reproductive performance. Contrary to predictions, under conditions of delayed mating opportunity, starved females had greater fecundity, gave birth to more high‐quality offspring and had increased longevity compared with that of fed females. We suggest that understanding proximal mechanisms underlying life history trade‐offs, including the function of oocyte apoptosis, and how these mechanisms respond to varied environmental conditions is critical.  相似文献   

20.
Toxicant bioaccumulation poses a risk to many marine mammal populations. Although individual-level toxicology has been the subject of considerable research in several species, we lack a theoretical framework to generalize the results across environments and life histories. Here we formulate a dynamic energy budget model to predict the effects of intra- and interspecific life history variation on toxicant dynamics in marine mammals. Dynamic energy budget theory attempts to describe the most general processes of energy acquisition and utilization in heterotrophs. We tailor the basic model to represent the marine mammal reproductive cycle, and we add a model of toxicant uptake and partitioning to describe vertical transfer of toxicants from mother to offspring during gestation and lactation. We first show that the model predictions are consistent with qualitative patterns reported in empirical studies and previous species-specific modeling studies. Next, we use this model to examine the dependence of offspring toxicant load on birth order, food density, and interspecific life history variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号