首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SR Function in malignant hyperthermia   总被引:1,自引:0,他引:1  
T.E. Nelson   《Cell calcium》1988,9(5-6):257-265
Malignant hyperthermia (MH) is a genetic disease in man and other animal species that predisposes to a catastrophic hypermetabolic syndrome that is triggered by certain anesthetic agents. A working hypothesis is that a defect in regulation of muscle cell calcium is the primary mechanism that initiates the MH syndrome. This paper reviews the evidence for a defect in muscle cell calcium as regulated by the sarcoplasmic reticulum membrane system. Skeletal muscle biopsied from MH man, pigs and dogs has abnormal in vitro contracture response to halothane and caffeine and these responses can be altered by lowering calcium content of the bathing solution and/or the muscle. Measurements of MH muscle cell Ca2+ by Ca2+-specific microelectrodes in vivo and fura-2 in vitro have demonstrated abnormal Ca2+ levels in resting and in caffeine-stimulated states. The SR membrane system is the primary calcium regulating organelle in skeletal muscle and a likely site for the defect in MH muscle. Two Ca2+ regulating functions of the SR have been explored in SR isolated from MH muscle. An abnormality of the 100K Ca2+-ATPase protein that functions to transport Ca2+ from myoplasm to inside the SR does not appear to be responsible for MH. The most probable defective site in the SR appears to be Ca2+ release channels and a Ca2+-induced Ca2+ release pathway has been shown to be abnormal in SR from MH human and pig muscle.  相似文献   

2.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

3.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

4.
The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbular SR, but it is absent from the network SR where the SR-Ca(2+)-ATPase and phospholamban are densely distributed. Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers. Because Purkinje fibers lack T- tubules, these results indicate that the ryanodine receptor is localized not only to the peripheral junctional SR but also to corbular SR densely distributed in interfibrillar spaces of the I-band regions. We have previously identified both corbular SR and junctional SR in cardiac muscle as potential Ca(2+)-storage/Ca(2+)-release sites by demonstrating that the Ca2+ binding protein calsequestrin and calcium are very densely distributed in these two specialized domains of cardiac SR in situ. The results presented here provide strong evidence in support of the hypothesis that corbular SR is indeed a site of Ca(2+)-induced Ca2+ release via the ryanodine receptor during excitation contraction coupling in cardiac muscle. Furthermore, these results indicate that the function of the cardiac Ca(2+)-release channel/ryanodine receptor is not confined to junctional complexes between SR and the sarcolemma.  相似文献   

5.
Heavy sarcoplasmic reticulum (SR) preparations of rabbit skeletal muscle, which are enriched in Ca2+-release vesicles from the terminal cisternae (TC) and [3H]ryanodine receptor density, exhibit 60% of the Ca2+-ATPase activity, 58% of the EP level, and 30% of the steady state Ca2+ loading compared to membrane vesicles from the longitudinal SR. The Ca2+-ATPase of TC SR is solubilized and separated from the Ca2+-ryanodine receptor complex in the insoluble fraction on treatment with the detergent C12E9. However, a 50% decrease in receptor density is observed upon removal of the Ca2+-ATPase, suggesting a significant contribution of this protein to maintaining optimal receptor complex density.  相似文献   

6.
To investigate possible abnormalities in erythrocyte membrane enzyme activities in the pharmacogenetic disorder MH, membrane ATPase activities have been examined in erythrocyte ghosts prepared from red blood cells of MHS and normal swine. While no differences were noted in Mg2+-ATPase activities, the (Na+, K+)-ATPase activity of MHS erythrocyte ghosts was less than that of normal ghosts. Ca2+-ATPase activity exhibited low- and high-affinity Ca2+-binding sites in both types of erythrocyte ghost. While the Km for Ca2+ was greater for normal than for MHS erythrocyte ghosts at the high-affinity Ca2+-binding site, the reverse was true at the low-affinity Ca2+-binding site. Irrespective of the type of calcium binding site occupied, the Vmax for normal erythrocyte ghost Ca2+-ATPase activity was greater than that for MHS ghosts. In the presence of calmodulin, there was now no difference between MHS and normal erythrocyte ghosts in either the Km for Ca2+ or the Vmax of the Ca2+-ATPase activity. To determine if the calcium pumping activity of intact MHS and normal pig erythrocytes differed, calcium efflux from the 45Ca-loaded erythrocytes was determined; this activity was significantly greater for MHS than for normal erythrocytes. Thus, the present study confirms that there are abnormalities in the membranes of MHS pig red blood cells. However, we conclude that these abnormalities are unlikely to result in an impaired ability of MHS erythrocytes to regulate their cytosolic Ca2+ concentration.  相似文献   

7.
Nitric oxide (NO*) is produced endogenously from NOS isoforms bound to sarcolemmal (SL) and sarcoplasmic reticulum (SR) membranes. To investigate whether locally generated NO* directly affects the activity of enzymes mediating ion active transport, we studied whether knockout of selected NOS isoforms would affect the functions of cardiac SL (Na+ + K+)-ATPase and SR Ca2+-ATPase. Cardiac SL and SR vesicles containing either SL (Na+ + K+)-ATPase or SR Ca2+-ATPase were isolated from mice lacking either nNOS or eNOS, or both, and tested for enzyme activities. Western blot analysis revealed that absence of single or double NOS isoforms did not interrupt the protein expression of SL (Na+ + K+)-ATPase and SR Ca2+-ATPase in cardiac muscle cells. However, lack of NOS isoforms in cardiac muscle significantly altered both (Na+ + K+)-ATPase activity and SR Ca2+-ATPase function. Our experimental results suggest that disrupted endogenous NO* production may change local redox conditions and lead to an unbalanced free radical homeostasis in cardiac muscle cells which, in turn, may affect key enzyme activities and membrane ion active transport systems in the heart.  相似文献   

8.
Abnormal ryanodine receptor channels in malignant hyperthermia.   总被引:14,自引:7,他引:7       下载免费PDF全文
Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder.  相似文献   

9.
The skeletal muscle ryanodine receptor of malignant hyperthermia-susceptible (MHS) pigs contains a mutation at residue 615 that is highly correlated with various abnormalities in the regulation of sarcoplasmic reticulum (SR) Ca2+ channel activity. In isolated SR membranes the Arg615 to Cys615 ryanodine receptor mutation is now shown to be directly responsible for an altered tryptic peptide map, due to the elimination of the Arg615 cleavage site. Furthermore, trypsin treatment released 86-99 kDa ryanodine receptor fragments encompassing residue 615 from the SR membranes. We conclude that the 86-99 kDa domain containing residue 615 is near the cytoplasmic surface of the ryanodine receptor and likely near important Ca2+ channel regulatory sites.  相似文献   

10.
Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.  相似文献   

11.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

12.
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to excessive Ca2+ release is not known and is examined here. Single RyR channels from normal and MH-susceptible (MHS) pigs were examined in artificial lipid bilayers. High cytoplasmic (cis) concentrations of either Ca2+ or Mg2+ (>100 microM) inhibited channel opening less in MHS RyRs than in normal RyRs. This difference was more prominent at lower ionic strength (100 mM versus 250 mM). In 100 mM cis Cs+, half-maximum inhibition of activity occurred at approximately 100 microM Mg2+ in normal RyRs and at approximately 300 microM Mg2+ in MHS RyRs, with an average Hill coefficient of approximately 2 in both cases. The level of Mg2+ inhibition was not appreciably different in the presence of either 1 or 50 microM activating Ca2+, showing that it was not substantially influenced by competition between Mg2+ and Ca2+ for the Ca2+ activation site. Even though the absolute inhibitory levels varied widely between channels and conditions, the inhibitory effects of Ca2+ and Mg2+ were virtually identical for the same conditions in any given channel, indicating that the two cations act at the same low-affinity inhibitory site. It seems likely that at the cytoplasmic [Mg2+] in vivo (approximately 1 mM), this Ca2+/Mg2+-inhibitory site will be close to fully saturated with Mg2+ in normal RyRs, but less fully saturated in MHS RyRs. Therefore MHS RyRs should be more sensitive to any activating stimulus, which would readily account for the development of an MH episode.  相似文献   

13.
The effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop, on Ca(2+) release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr(671)-Leu(690); 36 microM) enhanced the rate of Ca(2+) release from normal SR (SR(N)) and from SR of MH-susceptible muscle (SR(MH)) by 10 +/- 3.2 nmole/mg/min and 76 +/- 9.7 nmole/mg/min, respectively. Ca (2+) release from SR(N) or SR(MH) was not increased by control peptide NB (Gly(689)-Lys(708)). AS (scrambled A sequence; 36 microM) did not alter Ca (2+) release from SR(N), but increased release from SR(MH) by 29 +/- 4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyR(MH)) were up to about fourfold more strongly activated by peptide A (> or =1 nM) than normal RyR channels (RyR(N)) at -40 mV. Neither NB or AS activated RyR(N). RyR(MH) showed an approximately 1.8-fold increase in mean current with 30 microM AS. Inhibition at +40 mV was stronger in RyR(MH) and seen with peptide A (> or = 0.6 microM) and AS (> or = 0.6 microM), but not NB. These results show that the Arg(615)Cys substitution in RyR(MH) has multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca(2+) release from SR in MH-susceptible muscle.  相似文献   

14.
We have demonstrated recently that CICR (Ca2+-induced Ca2+ release) activity of RyR1 (ryanodine receptor 1) is held to a low level in mammalian skeletal muscle ('suppression' of the channel) and that this is largely caused by the interdomain interaction within RyR1 [Murayama, Oba, Kobayashi, Ikemoto and Ogawa (2005) Am. J. Physiol. Cell Physiol. 288, C1222-C1230]. To test the hypothesis that aberration of this suppression mechanism is involved in the development of channel dysfunctions in MH (malignant hyperthermia), we investigated properties of the RyR1 channels from normal and MHS (MH-susceptible) pig skeletal muscles with an Arg615-->Cys mutation using [3H]ryanodine binding, single-channel recordings and SR (sarcoplasmic reticulum) Ca2+ release. The RyR1 channels from MHS muscle (RyR1MHS) showed enhanced CICR activity compared with those from the normal muscle (RyR1N), although there was little or no difference in the sensitivity to several ligands tested (Ca2+, Mg2+ and adenine nucleotide), nor in the FKBP12 (FK506-binding protein 12) regulation. DP4, a domain peptide matching the Leu2442-Pro2477 region of RyR1 which was reported to activate the Ca2+ channel by weakening the interdomain interaction, activated the RyR1N channel in a concentration-dependent manner, and the highest activity of the affected channel reached a level comparable with that of the RyR1MHS channel with no added peptide. The addition of DP4 to the RyR1MHS channel produced virtually no further effect on the channel activity. These results suggest that stimulation of the RyR1MHS channel caused by affected inter-domain interaction between regions 1 and 2 is an underlying mechanism for dysfunction of Ca2+ homoeostasis seen in the MH phenotype.  相似文献   

15.
Malignant hyperthermia (MH) and central core disease (CCD) are disorders of skeletal muscle Ca2+ homeostasis that are linked to mutations in the type 1 ryanodine receptor (RyR1). Certain RyR1 mutations result in an MH-selective phenotype (MH-only), whereas others result in a mixed phenotype (MH + CCD). We characterized effects on Ca2+ handling and excitation-contraction (EC) coupling of MH-only and MH + CCD mutations in RyR1 after expression in skeletal myotubes derived from RyR1-null (dyspedic) mice. Compared to wild-type RyR1-expressing myotubes, MH + CCD- and MH-only-expressing myotubes exhibited voltage-gated Ca2+ release (VGCR) that activated at more negative potentials and displayed a significantly higher incidence of spontaneous Ca2+ oscillations. However, maximal VGCR was reduced only for MH + CCD mutants (Y4795C, R2435L, and R2163H) in which spontaneous Ca2+ oscillations occurred with significantly longer duration (Y4795C and R2435L) or higher frequency (R2163H). Notably, myotubes expressing these MH + CCD mutations in RyR1 exhibited both increased [Ca2+]i and reduced sarcoplasmic reticulum (SR) Ca2+ content. We conclude that MH-only mutations modestly increase basal release-channel activity in a manner insufficient to alter net SR Ca2+ content ("compensated leak"), whereas the mixed MH + CCD phenotype arises from mutations that enhance basal activity to a level sufficient to promote SR Ca2+ depletion, elevate [Ca2+]i, and reduce maximal VGCR ("decompensated leak").  相似文献   

16.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

17.
Gingerol, isolated as a potent cardiotonic agent from the rhizome of ginger, stimulated the Ca2+-pumping activity of fragmented sarcoplasmic reticulum (SR) prepared from rabbit skeletal and dog cardiac muscles. The extravesicular Ca2+ concentrations of the heavy fraction of the fragmented SR (HSR) were measured directly with a Ca2+ electrode to examine the effect of gingerol on the SR. Gingerol (3-30 microM) accelerated the Ca2+-pumping rate of skeletal and cardiac SR in a concentration-dependent manner. The rate of 45Ca2+ uptake of HSR was also increased markedly by 30 microM gingerol without affecting the 45Ca2+ efflux from HSR. Furthermore, gingerol activated Ca2+-ATPase activities of skeletal and cardiac SR (EC50, 4 microM). The activation of SR Ca2+-ATPase activity by gingerol (30 microM) was completely reversed by 100-fold dilution with the fresh saline solution. Kinetic analysis of activating effects of gingerol suggests that the activation of SR Ca2+-ATPase is uncompetitive and competitive with respect to Mg . ATP at concentrations of 0.2-0.5 mM and above 1 mM, respectively. Kinetic analysis also suggests that the activation by gingerol is mixed-type with respect to free Ca2+ and this enzyme is activated probably due to the acceleration of enzyme-substrate complex breakdown. Gingerol had no significant effect on sarcolemmal Ca2+-ATPase, myosin Ca2+-ATPase, actin-activated myosin ATPase and cAMP-phosphodiesterase activities, indicating that the effect of gingerol is rather specific to SR Ca2+-ATPase activity. Gingerol may provide a valuable chemical tool for studies aimed at clarifying the regulatory mechanisms of SR Ca2+-pumping systems and the causal relationship between the Ca2+-pumping activity of SR and muscle contractility.  相似文献   

18.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

19.
A 50% decrease in both the initial rate and the total capacity of Ca2+ uptake by the sarcoplasmic reticulum (SR) occurred 2 days after the onset of chronic (10 Hz) nerve stimulation in rabbit fast-twitch muscle. Prolonged stimulation (up to 28 days) did not lead to further decreases. This reduction, which was detected in muscle homogenates using a Ca2+-sensitive electrode, was reversible after 6 days cessation of stimulation and was not accompanied by changes in the immunochemically (ELISA) determined tissue level or isozyme characteristics of the SR Ca2+-ATPase protein. However, as measured in isolated SR, it correlated with a reduced specific activity of the Ca2+-ATPase. Kinetic analyses demonstrated that affinities of the SR Ca2+-ATPase towards Ca2+ and ATP were unaltered. Positive cooperativity for Ca2+ binding (h = 1.5) was maintained. However, a 50% decrease in Ca2+-dependent phosphoprotein formation indicated the presence of inactive forms of Ca2+-ATPase in stimulated muscle. The reduced phosphorylation of the enzyme was accompanied by an approximately 50% lowered binding of fluorescein isothiocyanate, a competitor at the ATP-binding site. In view of the unaltered affinity for ATP, this finding suggests that active Ca2+-ATPase molecules coexist in stimulated muscle with inactive enzyme molecules, the latter displaying altered properties at the nucleotide-binding site.  相似文献   

20.
The presence of a high and nonlinear Ca2+-independent (or basal) ATPase activity in rat heart preparations makes difficult the reliable measurement of sarcoplasmic reticulum (SR) Ca2+-ATPase activity by usual methods. A spectrophotometric assay for the accurate determination of SR Ca2+-ATPase activity in unfractionated homogenates from rat heart is described. The procedure is based on that reported by Simonides and van Hardeveld (1990, Anal. Biochem. 191, 321-331) for skeletal muscle homogenates. To avoid overestimation of the Ca2+-ATPase activity of cardiac homogenates that occurs when sequential measurements of total and basal ATPase activities are performed, two parallel and independent assays are required: one with low (micromolar) and other high (millimolar) calcium concentration. Addition of thapsigargin (0.2 microM) blocked totally the activity considered as Ca2+-ATPase activity. Using this method, the rat heart homogenate Ca2+-ATPase activity was 10.5 +/- 2.0 micromol. min-1 x g-1 tissue wet weight (n = 8). Likewise, a spectrophotometric assay for measuring E-type Mg2+-ATPase activity in cardiac total homogenates has been developed, comparing the following characteristics of the enzymatic activity in homogenate and a membrane-enriched fraction: first-order rate constant for ATP-dependent inactivation, Km for ATP, and effects of concanavalin A, Triton X-100, and specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号