首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We predicted and measured the evolution of smooth muscle cell (SMC) orientation in media-equivalents (MEs) for four fabrication conditions (F-, M-, F+, M+) under Free or Mandrel compaction (F/M) with and without magnetic prealignment of the collagen fibrils in the circumferential direction (+/-). Mandrel compaction refers to SMC-induced compaction of the ME that is constrained by having a nonadhesive mandrel placed in the ME lumen. Predictions were made using our anisotropic biphasic theory (ABT) for tissue-equivalent mechanics. Successful prediction of trends of the SMC orientation data for all four fabrication cases was obtained: maintenance of the initial isotropic state for F-, loss of initial circumferential alignment for F+, development of circumferential alignment for M-, and enhancement of initial circumferential alignment for M+. These results suggest two mechanisms by which the presence of the mandrel leads to much greater mechanical stiffness in the circumferential direction reported for mandrel compacted MEs relative to free compacted MEs: (1) by inducing an increasing circumferential alignment of the SMC and collagen, and (2) by inducing a large stress on the SMC, resulting in secretion and accumulation of stiffening components.  相似文献   

2.
Blood vessels are subject to tensile stress and associated strain which may influence the structure and organization of smooth muscle cells (SMCs) during physiological development and pathological remodeling. This study focused on the influence of the major tensile strain on the SMC orientation in the blood vessel wall. Several blood vessels, including the aorta, the mesenteric artery and vein, and the jugular vein of the rat were used to observe the normal distribution of tensile strains and SMC orientation; and a vein graft model was used to observe the influence of altered strain direction on the SMC orientation. The circumferential and longitudinal strains in these blood vessels were measured by using a biomechanical technique, and the SMC orientation was examined by fluorescent microscopy at times of 10, 20, and 30 days. Results showed that the SMCs were mainly oriented in the circumferential direction of straight blood vessels with an average angle of approximately 85 deg between the SMC axis and the vessel axis in all observed cases. The SMC orientation coincided with the principal direction of the circumferential strain, a major tensile strain, in the blood vessel wall. In vein grafts, the major tensile strain direction changed from the circumferential to the longitudinal direction at observation times of 10, 20, and 30 days after graft surgery. This change was associated with a decrease in the angle between the axis of newly proliferated SMCs and that of the vessel at all observation times (43 +/- 11 deg, 42 +/- 10 deg, and 41 +/- 10 deg for days 10, 20, and 30, respectively), indicating a shift of the SMC orientation from the circumferential toward the longitudinal direction. These results suggested that the major tensile strain might play a role in the regulation of SMC orientation during the development of normal blood vessels as well as during remodeling of vein grafts.  相似文献   

3.
Mechanical stresses influence the structure and function of adult and developing blood vessels. When these stresses are perturbed, the vessel wall remodels to return the stresses to homeostatic levels. Constrained mixture models have been used to predict remodeling of adult vessels in response to step changes in blood pressure, axial length and blood flow, but have not yet been applied to developing vessels. Models of developing blood vessels are complicated by continuous and simultaneous changes in the mechanical forces. Understanding developmental growth and remodeling is important for treating human diseases and designing tissue-engineered blood vessels. This study presents a constrained mixture model for postnatal development of mouse aorta with multiple step increases in pressure, length and flow. The baseline model assumes that smooth muscle cells (SMCs) in the vessel wall immediately constrict or dilate the inner radius after a perturbation to maintain the shear stress and then remodel the wall thickness to maintain the circumferential stress. The elastin, collagen and SMCs have homeostatic stretch ratios and passive material constants that do not change with developmental age. The baseline model does not predict previously published experimental data. To approximate the experimental data, it must be assumed that the SMCs dilate a constant amount, regardless of the step change in mechanical forces. It must also be assumed that the homeostatic stretch ratios and passive material constants change with age. With these alterations, the model approximates experimental data on the mechanical properties and dimensions of aorta from 3- to 30-day-old mice.  相似文献   

4.
Summary Recent studies indicate that the neointima of injured rat arteries is composed of a subpopulation of smooth muscle cells (SMCs) distinct from medial smooth muscle cells. However, SMC diversity in normal adult aorta has remained elusive. This study characterizes two morphologically and functionally distinct SMC types isolated from different anatomic regions of the normal rat aorta. Rat aortic medial smooth muscle cells (MSMCs) were isolated from the media after removal of the intimal and adventitial cells. Rat aortic intimal smooth muscle cells (ISMCs) were isolated from the intimal aspect of everted rat aortas. The two cell types were characterized morphologically and immunohistochemically and were compared for their capacity to contract collagen gels in response to endothelin-1. MSMCs were spindle-shaped and grew in hills and valleys showing features previously described for vascular SMCs. Conversely, ISMCs displayed a polygonal and epithelioid shape, grew mainly as a monolayer, and had a higher proliferative rate. Both cell types expressed alpha-smooth muscle actin and were negative for Factor VIII-RAg. ISMCs produced large amounts of a laminin and type IV collagen-rich extracellular matrix which had a characteristic pericellular distribution. ISMCs, but not MSMCs, rapidly contracted collagen gels in response to endothelin-1. This study indicates that the normal rat aorta contains two types of SMCs located in anatomically distinct regions of the vessel wall. Because of their functional characteristics, the SMCs isolated from the intimal aspect of the aorta may play an important role in physiologic as well as pathologic conditions.  相似文献   

5.
Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less alpha2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of alpha-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express alpha-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-alpha2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-alpha1 and anti-alpha2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs.  相似文献   

6.
Restenosis, or arterial lumen re-narrowing, occurs in 30–50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell–cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.  相似文献   

7.
Smooth muscle cells (SMCs) from prosthetic vascular grafts constitutively secrete higher levels of collagen than aortic SMCs. Lipid oxidation products accumulate in grafts, and we postulated that they stimulate SMC production of collagen. The effect of oxidized low-density lipoprotein (oxLDL) on type I collagen secretion by aortic and graft SMCs was compared. SMCs isolated from the canine thoracic aorta or Dacron thoracoabdominal grafts (n = 10) were incubated with native LDL or oxLDL (0-400 microg cholesterol/ml) for 72 h. Type I collagen in the conditioned medium was measured by ELISA. OxLDL increased collagen production by graft SMCs from 4.1 +/- 0.3 to 11.0 +/- 0.4 ng/microg DNA and by aortic SMCs from 2.3 +/- 0.1 to 3.5 +/- 0.2 ng/microg DNA. Native LDL had little effect. LY-83583, a superoxide generator, stimulated a dramatic increase in collagen secretion by graft SMCs and a smaller but significant elevation by aortic SMCs. OxLDL has been shown to increase PDGF production by graft SMCs, and PDGF can stimulate collagen production. Anti-PDGF antibody inhibited the increase in collagen production by graft SMCs that was stimulated by oxLDL, implicating PDGF as one mechanism of oxLDL-induced collagen production. Lipid oxidation products that accumulate in prosthetic vascular grafts can cause an oxidative stress that stimulates PDGF production by graft SMCs that in turn stimulates collagen production, contributing to the progression of intimal hyperplasia.  相似文献   

8.
Chiu HY  Chen CW  Lin HT  Hsieh CC  Lin SS  Cheng CM 《Cytokine》2011,56(3):726-731
Asthma is a chronic airway inflammatory disease. Chronic aspiration by gastric fluid in gastroesophageal reflux disease (GERD) is considered a primary inflammatory factor exacerbating or predisposing patients to asthma. Airway smooth muscle cells (SMCs) are considered an important component in airway remodeling. To investigate the role of gastric fluid in airway SMC inflammation and airway remodeling, we examined gastric fluid-induced cytokine and chemokine profiles, airway SMC migration and matrix metalloproteinase expression in rat primary rat airway SMCs. The T helper cell type 2 (Th2) cytokines interleukin 4, interleukin 6 and tumor necrosis factor 2 (TNF-α) and the chemokines, lipopolysaccharide-induced CXC chemokine (LIX/CXCL5), cytokine-induced neutrophil chemoattractant 2 (CINC-2), CINC-3, fractalkine, ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor were induced by gastric fluid in primary cultured rat airway SMCs. Migration of rat airway SMCs was enhanced by gastric fluid and conditioned medium. The migration of rat airway SMCs enhanced by gastric fluid was associated with actin polymerization and activation of focal adhesion kinase. Matrix metalloproteinase 2 expressions in airway SMCs was enhanced by gastric fluid and conditioned medium. The results suggest potential mechanisms by which gastric fluid aspiration might influence SMC-mediated airway remodeling.  相似文献   

9.
High lethality of aortic dissection necessitates accurate predictive metrics for dissection risk assessment. The not infrequent incidence of dissection at aortic diameters <5.5 cm, the current threshold guideline for surgical intervention (Nishimura et al., 2014), indicates an unmet need for improved evidence-based risk stratification metrics. Meeting this need requires a fundamental understanding of the structural mechanisms responsible for dissection evolution within the vessel wall. We present a structural model of the repeating lamellar structure of the aortic media comprised of elastic lamellae and collagen fiber networks, the primary load-bearing components of the vessel wall. This model was used to assess the role of these structural features in determining in-plane tissue strength, which governs dissection initiation from an intimal tear. Ascending aortic tissue specimens from three clinically-relevant patient populations were considered: non-aneurysmal aorta from patients with morphologically normal tricuspid aortic valve (CTRL), aneurysmal aorta from patients with tricuspid aortic valve (TAV), and aneurysmal aorta from patients with bicuspid aortic valve (BAV). Multiphoton imaging derived collagen fiber organization for each patient cohort was explicitly incorporated in our model. Model parameters were calibrated using experimentally-measured uniaxial tensile strength data in the circumferential direction for each cohort, while the model was validated by contrasting simulated tissue strength against experimentally-measured strength in the longitudinal direction. Orientation distribution, controlling the fraction of loaded collagen fibers at a given stretch, was identified as a key feature governing anisotropic tissue strength for all patient cohorts.  相似文献   

10.
Summary To establish parenchymal hepatocyte cell lines, we tried to subculture the primary hepatocytes isolated from adult rats. The hepatocytes were cultured in serum-free modified Dulbecco’s modified Eagle’s medium supplemented with 10 mM nicotinamide and 10 ng/ml epidermal growth factor. When 6×105 cells were plated on 35-mm dishes coated with rat tail collagen, the cells proliferated and reached confluence at Day 6 to Day 8. The first subculture was carried out at Day 8 using 0.005% collagenase and gentle pipettings. Most cells were recovered and plated on the new dishes coated with the collagen (first passage). The attached cells could proliferate and reached near confluence when the cells occupied more than two-thirds of the dish surface. About a week after the first subculture, the second one was conducted. Although the number of the recovered cells was smaller than at the first passage, the cells could attach and proliferate to a certain extent. Thereafter, they were maintained for more than 2 mo. but they never overgrew. Albumin secretion into the culture medium was confirmed in the subcultured cells. Ultrastructurally, these subcultured cells possessed hepatic characteristics such as peroxisomes with a crystalline nucleoid and bile-canaliculus structures. When 10% fetal bovine serum and ascorbic acid 2-phosphate were added to the cells of the second passage, they began to proliferate very slowly. These proliferating cells were mainly mononucleate and had a small cytoplasm. In addition, some of them could differentiate into typical mature hepatocytes by forming a three-dimensional structure interacting with nonparenchymal cells. In this experiment, we showed the successful subculturing of parenchymal hepatocytes isolated from adult rats and provided evidence that the subcultured cells still have the potential to proliferate and to differentiate.  相似文献   

11.
Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.  相似文献   

12.
The extracellular matrix in tissues such as bone, tendon and cornea contains ordered, parallel arrays of collagen type I fibrils. Cells embedded in these matrices frequently co-align with the collagen fibrils, suggesting that ordered fibrils provide structural or signalling cues for cell polarization. To study mechanisms of matrix-induced cell alignment, we used nanoscopically defined two-dimensional matrices assembled of highly aligned collagen type I fibrils. On these matrices, different cell lines expressing integrin alpha(2)beta(1) polarized strongly in the fibril direction. In contrast, alpha(2)beta(1)-deficient cells adhered but polarized less well, suggesting a role of integrin alpha(2)beta(1) in the alignment process. Time-lapse atomic force microscopy (AFM) demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization was prevented. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix, leading to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.  相似文献   

13.
The extracellular matrix of the myocardium contains an elaborate structural matrix composed mainly of fibrillar types I and III collagen. This matrix is responsible for the support and alignment of myocytes and capillaries. Because of its alignment, location, configuration and tensile strength, relative to cardiac myocytes, the collagen matrix represents a major determinant of myocardial stiffness. Cardiac fibroblasts, not myocytes, contain the mRNA for these fibrillar collagens. In the hypertrophic remodeling of the myocardium that accompanies arterial hypertension, a progressive structural and biochemical remodeling of the matrix follows enhanced collagen gene expression. The resultant significant accumulation of collagen in the interstitium and around intramyocardial coronary arteries, or interstitial and perivascular fibrosis, represents a pathologic remodeling of the myocardium that compromises this normally efficient pump. This report reviews the structural nature, biosynthesis and degradation of collagen in the normal and hypertrophied myocardium. It suggests that interstitial heart disease, or the disproportionate growth of the extracellular matrix relative to myocyte hypertrophy, is an entity that merits greater understanding, particularly the factors regulating types I and III collagen gene expression and their degradation.  相似文献   

14.
The tensile strength and stiffness of load-bearing soft tissues are dominated by their collagen fiber orientation. While microgrooved substrates have demonstrated a capacity to orient cells and collagen in monolayer tissue culture, tissue engineering (TE) scaffolds are structurally distinct in that they consist of a three-dimensional (3-D) open pore network. It is thus unclear how the geometry of these open pores might influence cell and collagen orientation. In the current study we developed an in vitro model system for quantifying the capacity of large scale ( approximately 200 microm), geometrically well-defined open pores to guide cell and collagen orientation in engineered tissues. Non-degradable scaffolds exhibiting a grid of 200 microm wide rectangular pores (1:1, 2:1, 5:1, and 10:1 aspect ratios) were fabricated from a transparent epoxy resin via high-resolution stereolithography. The scaffolds (n=6 per aspect ratio) were surface modified to support cell adhesion by covalently grafting GRGDS peptides, sterilized, and seeded with neonatal rat skin fibroblasts. Following 4 weeks of static incubation, the resultant collagen orientation was assessed quantitatively by small angle light scattering (SALS), and cell orientation was evaluated by laser confocal and scanning electron microscopy. Cells adhered to the struts of the pores and proceeded to span the pores in a generally circumferential pattern. While the cell and collagen orientations within 1:1 aspect ratio pores were effectively random, higher aspect ratio rectangular pores exhibited a significant capacity to guide global cell and collagen orientation. Preferential alignment parallel to the long strut axis and decreased spatial variability were observed to occur with increasing pore aspect ratio. Intra-pore variability depended in part on the spatial uniformity of cell attachment around the perimeter of each pore achieved during seeding. Evaluation of diamond-shaped pores [Sacks, M.S. et al., 1997. J. Biomech. Eng. 119(1), 124-127] suggests that they are less sensitive to initial conditions of cell attachment than rectangular pores, and thus more effective in guiding engineered tissue cell and collagen orientation.  相似文献   

15.
In this report, we have shown that the standard laboratory diet administered to Psammomys obesus (sand rat) from Beni Abbes in Algeria, induced a non-insulin dependant diabetes, characterised by increase of body weight (p<0.001) as well as hyperinsulinemia, hyperglycemia and hypercholesterolemia. In cultured aortic smooth muscle cells (SMC) of sand rats, type I and type III collagen biosynthesis and insulin effects, at low dose, on these parameters were investigated. In all experimental conditions of cultured SMC study, The α chains of type I collagen were analysed by immunoblotting in media and cells.Metabolic radiolabelling and Immunochemical procedures revealed that, in diabetic state, synthetic SMC (SMCs) actively produce type I and III collagen which are synthesised in the cells and secreted in the medium; type I collagen was predominant as compared with type III collagen. Diabetes enhanced the collagen synthesis. Low dose of Insulin added to the medium, during 48h of incubation, induced a marked reduction in the synthesis of collagen types, especially type I collagen.  相似文献   

16.
17.
The effects of leucocyte elastase on the tensile properties of adult human articular cartilage were examined in detail in 99 specimens from hip, knee and ankle joints in the age range 16–83 years. The results showed that elastase reduced the tensile stiffness of cartilage, both at low stress and at fracture. The tensile strength of cartilage was also considerably reduced by the action of elastase. Biochemical analysis of the incubation media, and the specimens, revealed that 90%, or more, of the proteoglycan was released from the cartilage, whilst the release of collagen was negligible. Leucocyte elastase is known to degrade the non-helical terminal peptides of cartilage collagen molecules and thereby disrupt the main intermolecular cross-links in collage fribrils. A previous study (Kempson, G.E., Tuke, M.A., Dingle, J.T., Barrett, A.J. and Horsfield, P.H. (1976) Biochim. Biophys. Acta 428, 741–760) showed the lack of effect of proteoglycan degradation alone on the tensile strength and stiffness of cartilage. The reduction in strength and stiffness recorded in the present study can, therefore, be attributed to the action of elastase on the collagen in cartilage and it emphasises the important of covalent intermolecular cross-links to the mechanical properties of collagen fibrils.  相似文献   

18.
Developmental origin of smooth muscle cells in the descending aorta in mice   总被引:1,自引:0,他引:1  
Aortic smooth muscle cells (SMCs) have been proposed to derive from lateral plate mesoderm. It has further been suggested that induction of SMC differentiation is confined to the ventral side of the aorta, and that SMCs later migrate to the dorsal side. In this study, we investigate the origin of SMCs in the descending aorta using recombination-based lineage tracing in mice. Hoxb6-cre transgenic mice were crossed with Rosa 26 reporter mice to track cells of lateral plate mesoderm origin. The contribution of lateral plate mesoderm to SMCs in the descending aorta was determined at different stages of development. SMC differentiation was induced in lateral plate mesoderm-derived cells on the ventral side of the aorta at embryonic day (E) 9.0-9.5, as indicated by expression of the SMC-specific reporter gene SM22alpha-lacZ. There was, however, no migration of SMCs from the ventral to the dorsal side of the vessel. Moreover, the lateral plate mesoderm-derived cells in the ventral wall of the aorta were replaced by somite-derived cells at E10.5, as indicated by reporter gene expression in Meox1-cre/Rosa 26 double transgenic mice. Examination of reporter gene expression in adult aortas from Hoxb6-cre/Rosa 26 and Meox1-cre/Rosa 26 double transgenic mice suggested that all SMCs in the adult descending aorta derive from the somites, whereas no contribution was recorded from lateral plate mesoderm.  相似文献   

19.
Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the Ca2+ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 (5 microM) and inhibition of phospholipase C (PLC) with U73122/U73343 (5 microM) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, 5 microM) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular Ca2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号