首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.  相似文献   

2.
Ca2+ causes less than 2-fold elevations of guinea pig sperm cyclic AMP concentrations when cells are incubated in a minimal culture medium in the absence of bicarbonate (HCO3-). However, in the presence of HCO3-, Ca2+ increases cyclic AMP by as much as 25-fold within 1 min. The (Ca2+, HCO3-)-induced elevations occur in either the presence or absence of the permeant anions, pyruvate and lactate. In the absence of extracellular Ca2+, HCO3- elevates cyclic AMP only slightly. The effect of HCO3- is concentration-dependent, with maximal responses obtained at concentrations of greater than 25 mM. Ca2+ (25 mM HCO3-) at concentrations of less than 100 microM causes one-half-maximal elevations of cyclic AMP. The (Ca2+, HCO3-)-induced elevations of cyclic AMP are observed at various extracellular pH values (7.5-8.5) and in the presence or absence of extracellular Na+ or K+. NH4Cl does not elevate sperm cyclic AMP concentrations and does not greatly alter the (Ca2+, HCO3-)-induced elevations. the putative Ca2+ transport antagonist, D-600 (100 microM), completely blocks the (Ca2+, HCO3-)-induced elevations of cyclic AMP. A23187, in the presence but not in the absence of extracellular Ca2+, increases sperm cyclic AMP but does not further elevate cyclic AMP in HCO3(-)-treated cells. These studies establish that Ca2+-dependent elevations of cyclic AMp in guinea pig spermatozoa are dependent on the presence of HCO3- and suggest that HCO3- is required for the uptake (exchange) or membrane sequestration of small amounts of physiologically active Ca2+.  相似文献   

3.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

4.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

5.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

6.
The effect of Mg-ATP and cyclic AMP on the secretion of alpha-melanocyto-stimulating hormone (alpha-MSH) from electrically permeabilized cells of rat intermediate lobe (IL) were investigated. Addition of exogenous Ca2+ stimulated alpha-MSH secretion in a concentration- (EC50 = 4.8 microM) and temperature-dependent manner. This Ca2+-evoked secretion was further enhanced by Mg-ATP and cyclic AMP. Mg-ATP was required for the fully secretory response in the electrically permeabilized IL cells and the maximal secretion was reached at 1 mM. Cyclic AMP in the presence of GTP gamma S also potentiated Ca2+-evoked alpha-MSH secretion to the same magnitude as Mg-ATP. In the absence of Ca2+ both the cyclic AMP and Mg-ATP did not stimulate alpha-MSH secretion from IL cells. The data suggest that Mg-ATP and cyclic AMP may modulate directly the secretory components rather than change intracellular concentration of free Ca2+.  相似文献   

7.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

8.
1. Sealed pigeon erythrocyte 'ghosts' were prepared containing ATP and the Ca2+-activated photoprotein obelin to investigate the relationship cyclic AMP formation and internal free Ca2+. 2. The 'ghosts' were characterized by (a) morphology (optical and electron microscopy), (b) composition (haemoglobin, K+, Na+, Mg2+, ATP, obelin), (c) permeability to Ca2+, assessed by obelin luminescence and (d) hormone sensitivity (the effect of beta-adrenergic agonists and antagonists on cyclic AMP formation). 3. The effect of osmolarity at haemolysis and ATP at resealing on these parameters was investigated. 4. Sealed 'ghosts', containing approx. 2% of original haemoglobin, 150mM-K+, 0.5MM-ATP, 10(3)--10(4) obelin luminescence counts/10(6) 'ghosts', which were relatively impermeable to Ca2+ and in which cyclic AMP formation was stimulated by beta-adrenergic agonists over a concentration range similar to that for intact cells, could be prepared after haemolysis in 6mM-NaCl3mM-MgCl2/50mM-Tes, pH7, and resealing for 30min at 37 degrees C in the presence of ATP and 150mM-KCl. 5. The initial rate of adrenaline-stimulated cyclic AMP formation in these 'ghosts' was 30--50% of that in intact cells and was inhibited by the addition of extracellular Ca2+. Addition of Ca2+ to the 'ghosts' resulted in a stimulation of obelin luminescence, indicating an increase in internal free Ca2+ under these conditions. 6. The ionophore A23187 increased the rate of obelin luminescence in the 'ghosts' and also inhibited the adrenaline-stimulated increase in cyclic AMP. 7. The effect of ionophore A23187 on obelin luminescence and on cyclic AMP formation in the 'ghosts' was markedly decreased by sealing EGTA inside the 'ghosts'. 8. It was concluded that cyclic AMP formation inside sealed pigeon erythrocyte 'ghosts' could be inhibited by more than 50% by free Ca2+ concentrations in the range 1--10 micrometer.  相似文献   

9.
The effects of various concentrations of extracellular K+ (3.6-13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca2+. Small amounts of EGTA (50 microM) were added to reduce the free Ca2+ concentrations effectively to zero at the lowest possible total Ca2+ concentration. At a total extracellular concentration of 2.5 mM Ca2+, in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K+. The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K+ compared with that at 3.6 mM were highly significant (p less than 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K+. Lowering the effective free concentration of Ca2+ to zero decreased the steroid and cAMP outputs significantly at all K+ concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K+ (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K+). Nifedipine (10(-6) to 10(-4) M) was added to the incubations with the aim of specifically inhibiting Ca2+ influx at total extracellular Ca2+ concentrations of 2.5, 1.25 and 0.25 mM and with the usual K+ concentrations. The cAMP outputs were reduced at all K+ concentrations above 3.6 mM K+. The effect was highly significant at 10(-4) M nifedipine and a total Ca2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca2+ concentrations in vivo. These results indicate that cAMP plays a significant role in the stimulation of steroid output by K+ particularly between 3.6 and 8.4 mM K+. In this range of K+ concentrations the stimulation of cAMP seems to be controlled by increases in Ca2+ influx. The correlation of steroid and cAMP output at the higher K+ concentrations (between 8.4 and 13 mM K) and at the various total Ca2+ concentrations is less significant. Also, with all concentrations of added nifedipine there is an 'anomalous' increase in steroid output at 13 mM K+ and at total Ca2+ concentrations of 2.5 and 1.25 mM. However, at the same K+ concentrations and at 0.25 mM Ca2+, nifedipine decreases steroid outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Net hepatic Ca2+ efflux, K+ uptake and glycogen breakdown in response to the alpha 1-adrenergic agonist phenylephrine were studied. Rat livers were perfused with CO2/bicarbonate-buffered solutions containing 10 microM Ca2+ and different amounts of Mg2+. K+-free medium and/or ouabain were used to block (Na+ + K+)-ATPase-dependent K+ uptake. In some experiments a sharp increase in extracellular Ca2+ concentrations was produced by infusing CaCl2 into the medium entering the liver. Perfusion with K+-free medium and ouabain enhanced the phenylephrine-induced Ca2+ efflux and diminished the glycogenolytic response, indicating a dissociation of Ca2+ release and glycogenolysis. Exogenous Ca2+ had practically no effect if livers were perfused with regular medium containing 1.2 mM Mg2+. In the presence of phenylephrine and if extracellular Mg2+ concentrations were lowered by omitting Mg2+ from the medium or by preperfusion with EGTA, exogenous Ca2+ was glycogenolytically effective and also produced a transient K+ uptake. Increased extracellular concentrations of Mg2+ inhibited the effects of exogenous Ca2+. In the presence of phenylephrine, higher concentrations of Mg2+ were needed than in the absence of alpha 1-adrenergic agonist to achieve a similar degree of inhibition. In one respect ouabain effects were comparable to those of phenylephrine: the glycoside also increased the metabolic response to exogenous Ca2+ and diminished the sensitivity towards Mg2+. Phenylephrine and ouabain may both enhance the permeability of plasma membranes for Ca2+.  相似文献   

11.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

12.
The stability constants of complexes of 3', 5'-cyclic AMP with Mg2+, Ca2+, Mn2+, Ni2+ and Co2+ were estimated at 30 degrees C in solutions of ionic strength about 0.15 containing about 130 mM K+ or tetramethylammonium ions. Values between 13 and 22 M-1 were obtained, indicating that only about 2% of cyclic AMP is present as metal complexes in vivo, but that at commonly used in vitro concentrations of 10 mM bivalent metal ions, 10--20% of cyclic AMP is present as metal complexes. The possible significance of these metal complexes, for example as competitive inhibitors, is discussed.  相似文献   

13.
Glucagon can stimulate gluconeogenesis from 2 mM lactate nearly 4-fold in isolated liver cells from fed rats; exogenous cyclic adenosine 3':5'-monophosphate (cyclic AMP) is equally effective, but epinephrine can stimulate only 1.5-fold. Half-maximal effects are obtained with glucagon at 0.3 nM, cyclic AMP at 30 muM and epinephrine at 0.2 muM. Insulin reduces by 50% the stimulation by suboptimal concentrations of glucagon (0.5 nM). A half-maximal effect is obtained with 0.3 nM insulin (45 microunits/ml). Glucagon in the presence of theophylline (1 mM) causes a rapid rise and subsequent fall in intracellular cyclic AMP with a peak between 3 and 6 min. Some of the fall can be accounted for by loss of nucleotide into the medium. This efflux is suppressed by probenecid, suggesting the presence of a membrane transport mechanism for the cyclic nucleotide. Glucagon can raise intracellular cyclic AMP about 30-fold; a half-maximal effect is obtained with 1.5 nM hormone. Epinephrine (plus theophylline, 1 mM) can raise intracellular cyclic AMP about 2-fold; the peak elevation is reached in less than 1 min and declines during the next 15 min to near the basal level. Insulin (10 nM) does not lower the basal level of cyclic AMP within the hepatocyte, but suppresses by about 50% the rise in intracellular and total cyclic AMP caused by exposure to an intermediate concentration of glucagon. No inhibition of adenylate cyclase by insulin can be shown. Basal gluconeogenesis is not significantly depressed by calcium deficiency but stimulation by glucagon is reduced by 50%. Calcium deficiency does not reduce accumulation of cyclic AMP in response to glucagon but diminishes stimulation of gluconeogenesis by exogenous cyclic AMP. Glucagon has a rapid stimulatory effect on the flux of 45Ca2+ from medium to tissue.  相似文献   

14.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

15.
Islets microdissected from ob/ob-mice were exposed to 3mM pentobarbital in media which were normal or deficient in Ca2+. This treatment resulted in marked decrease of the islet content of cyclic AMP recorded in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Pentobarbital had a dual effect on insulin release. In addition to being a potent inhibitor of glucose-stimulated insulin release in media containing 2.56 mM Ca2+ it increased the amounts of insulin released in high glucose media deficient in Ca2+. There was a transient stimulation with ordinary concentrations of Ca2+ and 3mM glucose whtn the media also contained 3-isobutyl-1-methylxanthine. The stimulatory effect of pentobarbital persisted after replacing part of the Ca2+ in the beta-cell membrane with lanthanum ions and it could not be mimicked by lowering the oxygen tension of the incubation medium. It is suggested that pentobarbital stimulation of insulin release is the result of a specific action of the drug on the distribution of Ca2+ within the pancreatic beta-cells.  相似文献   

16.
Tyrosine hydroxylase (TH) activity of human postmortem brain tissues from controls and patients with Parkinson's disease (PD) was examined in the presence of Fe2+ and phosphorylation agents, such as cyclic AMP, exogenous protein kinase, calcium plus calmodulin (Ca2+-CaM), and ATP. TH activity from parkinsonian tissue was increased by 48% with statistical significance in the presence of exogenous protein kinase. Cyclic AMP alone had no effect, whereas Ca2+-CaM increased the activity by only 10%. The presence of acetylcholine resulted in a slight decrease in enzyme activity. Human TH was stimulated 13.17-fold in the presence of 1 mM Fe2+. For iron dependence, no significant differences could be shown for the Km values of TH in striata of PD, while the activity of TH was half of that of controls. Here stimulation with 1 mM Fe2+ raised the activity of TH 11-fold. Stimulation of rat, gerbil, pig, and human caudate nucleus TH with Fe2+ shows remarkable species differences. In particular, the sensitivity of human TH to stimulating processes is noteworthy. H2O2 decreases TH activity only at high concentrations. Species differences are noted for the combined incubation of Fe2+ and H2O2. In the gerbil caudate nucleus, H2O2 does not prevent the stimulating properties of Fe2+, while the pig shows a dose-dependent decline of TH activity. In conclusion, there are no significant changes in the stimulating properties of human caudate nucleus TH activity with Fe2+ in PD, while such differences are noted by using exogenous protein kinase. Furthermore, experimental evidence shows that TH activity declines at high concentrations of H2O2 only. Potentiation of this effect by Fe2+ seems to be species-dependent.  相似文献   

17.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

18.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

19.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

20.
The effect of membrane depolarization on cyclic AMP synthesis was studied in glia-free, low-density, monolayer cultures of chick retinal photoreceptors and neurons. In photoreceptor-enriched cultures prepared from embryonic day 6 retinas and cultured for 6 days, elevated K+ concentrations increased the intracellular concentration of cyclic AMP and stimulated the conversion of [3H]adenine to [3H]cyclic AMP. The K(+)-evoked increase of cyclic AMP accumulation was blocked by omitting CaCl2 from the incubation medium, indicating a requirement for extracellular Ca2+. Stimulation of cyclic AMP accumulation was also inhibited by nifedipine, methoxyverapamil, Cd2+, Co2+, and Mg2+, and was enhanced by the dihydropyridine Ca2+ channel agonist Bay K 8644. The enhancement of K(+)-evoked cyclic AMP accumulation by Bay K 8644 was antagonized by nifedipine. Thus, Ca2+ influx through dihydropyridine-sensitive channel is required for depolarization-evoked stimulation of cyclic AMP accumulation in photoreceptor-enriched cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号