首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The characteristics of cell-free translation systems prepared from unfertilized eggs and early cleavage stage embryos of the sea urchin, Strongylocentrotus purpuratus, closely reflect the developmentally regulated changes in protein synthesis initiation observed in vivo. Cell-free translation systems prepared over the first 0-6 h following fertilization show gradually increasing activities, mimicking the changes observed in vivo. The mechanisms underlying these increases are complex and occur at several levels. One factor contributing to the rise in protein synthetic rate is the gradual increase in eukaryotic initiation factor (eIF)-4 activity. This is correlated with the progressive inactivation of an inhibitor of eIF-4 function, which can be reactivated by in vitro manipulations. The relatively slow activation of eIF-4 follows similar kinetics to the increased utilization of maternal mRNA and ribosomes, in contrast to the rapid rise in maternal mRNA activation, and the increase in eIF-2B activity. This slow release from eIF-4 inhibition following a rapid release from eIF-2B inhibition and increased mRNA availability is reflected in the pattern of initiator tRNA binding to the small ribosomal subunit observed in cell-free translation systems. In translation systems from unfertilized eggs, initiator tRNA is unable to interact with the small ribosomal subunit, consistent with an initial block in both eIF-2B and eIF-4 activity. In translation systems from 30-min embryos, 48 S preinitiation complexes accumulate, reflecting the release from inhibition of mRNA availability and eIF-2B activity, but continued low activity of eIF-4. The accumulation of initiator tRNA in 48 S preinitiation complexes disappears gradually in translation systems from later embryos, as eIF-4 is slowly released from inhibition.  相似文献   

4.
Kinetics of dephosphorylation of eIF-2(alpha P) and reutilization of mRNA   总被引:4,自引:0,他引:4  
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2) causes mRNA to accumulate in 48 S complexes containing Met-tRNAf and eIF-2(alpha P). When the eIF-2 alpha kinase is inhibited by 2-aminopurine, the mRNA is slowly transferred from 48 to 80 S initiation complexes after an initial lag. The cause of this lag was examined by investigating whether mRNA and Met-tRNAf dissociated from 48 S complexes before binding to 80 S. Both compounds were quantitatively transferred from 48 to 80 S complexes after addition of 2-aminopurine and the eIF-2(alpha P) bound to 48 S complexes was dephosphorylated after an initial lag more slowly than unbound eIF-2(alpha P), which was rapidly dephosphorylated. the eIF-2(alpha P) in isolated 48 S complexes was slowly dephosphorylated by partially purified lysate phosphatases, whereas free eIF-2(alpha P) was readily dephosphorylated. These results indicated that 48 S complexes could directly join to a 60 S ribosomal subunit after eIF-2(alpha P) dephosphorylation. The lag and slow kinetics of dephosphorylation of eIF-2(alpha P) bound to 48 S complexes accounted for the slow transfer of mRNA from 48 to 80 S complexes. Moreover, the mRNA bound to 48 S complexes was more susceptible to cleavage by an endonuclease than mRNA in polyribosomes, as shown by activating the (2'-5')oligo(A)-dependent endonuclease. This finding is discussed in view of the possible role of eIF-2 alpha kinase and endonuclease in the inhibition of viral mRNA translation in interferon-treated cells.  相似文献   

5.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

6.
Overview: phosphorylation and translation control   总被引:3,自引:0,他引:3  
J W Hershey 《Enzyme》1990,44(1-4):17-27
Protein synthesis is controlled by the phosphorylation of proteins comprising the translational apparatus. At least 12 initiation factor polypeptides, 3 elongation factors and a ribosomal protein are implicated. Stimulation of translation correlates with enhanced phosphorylation of eIF-4F, eIF-4B, eIF-2B, eIF-3 and ribosomal protein S6, whereas inhibition correlates with phosphorylation of eEF-2 and the alpha-subunit of eIF-2. Strong evidence for regulatory roles exists for eIF-2, eIF-4F and eEF-2, whereas changes in other factor activities due to phosphorylation remain to be demonstrated. Regulation of the specific activity of the translational apparatus by phosphorylation appears to be a general mechanism for the control of rates of global protein synthesis, and may also play a role in modulating the translation of specific mRNAs.  相似文献   

7.
Cerebral ischaemia is associated with brain damage and inhibition of neuronal protein synthesis. A deficit in neuronal metabolism and altered excitatory amino acid release may both contribute to those phenomena. In the present study, we demonstrate that both NMDA and metabolic impairment by 2-deoxyglucose or inhibitors of mitochondrial respiration inhibit protein synthesis in cortical neurons through the phosphorylation of eukaryotic elongation factor (eEF-2), without any change in phosphorylation of initiation factor eIF-2alpha. eEF-2 kinase may be activated both by Ca(2+)-independent AMP kinase or by an increase in cytosolic Ca2+. Although NMDA decreases ATP levels in neurons, only the effects of 2-deoxyglucose on protein synthesis and phosphorylation of elongation factor eEF-2 were reversed by Na(+) pyruvate. Protein synthesis inhibition by 2-deoxyglucose was not as a result of a secondary release of glutamate from cortical neurons as it was not prevented by the NMDA receptor antagonist 5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine hydrogen maleate (MK 801), nor to an increase in cytosolic-free Ca2+. Conversely, 2-deoxyglucose likely activates eEF-2 kinase through a process involving phosphorylation by AMP kinase. In conclusion, we provide evidence that protein synthesis can be inhibited by NMDA and metabolic deprivation by two distinct mechanisms involving, respectively, Ca(2+)-dependent and Ca(2+)-independent eEF-2 phosphorylation.  相似文献   

8.
路易小体(Lewy body, LB),位于神经细胞核周(perikaryon)的嗜酸性包含体(eosinophilic inclusion),含有广泛的蛋白质组分,其中一部分是组成型蛋白质(consistent organization),另外一部分则是选择型蛋白质(selective composition).为了在体外获得LB中未知蛋白质的新线索,通过人工合成蛋白酶体抑制剂PSI(proteasomal inhibitor, 10 μmol/L)作用PC 12细胞48 h,使其产生嗜酸性(staining for eosin)和抗α-synuclein阳性(immunostaining for α- synuclein)的PSI诱导性包含体(PSI-induced inclusion),通过成功的分级分离(fractionation)纯化了完整、纯净的包含体,通过有效的双向电泳(two-dimensional electrophoresis,2-DE)分离了包含体蛋白质,通过无偏差的基质辅助激光解析 离子化飞行时间质谱(matrix- assisted laser desorption/ionization time-of-flight massspectrometry,MALDI-TOF MS)鉴定了真核细胞翻译起始因子-3亚单位5(eukaryotic translation initiation factor 3 subunit 5, eIF-3ε)、真核细胞延伸因子-2(eukaryotic elongation factor 2, eEF-2)和线粒体延伸因子-Tu(mitochondrial elongation factor Tu, EF-Tumt)等真核细胞翻译因子(eukaryotic translation factors).这一结果提示,当蛋白酶体受到抑制时真核细胞翻译因子被富集到PSI诱导性包含体中,并且可能影响其形成过程.  相似文献   

9.
Infection of mouse L cells by vesicular stomatitis virus results in the inhibition of cellular protein synthesis. Lysates prepared from these infected cells are impaired in their ability to translate endogenous or exogenous cellular and viral mRNAs. The ability of initiation factors from rabbit reticulocytes to stimulate protein synthesis in these lysates was examined. Preparations of eukaryotic initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) stimulated protein synthesis strongly in L cell lysates from infected cells but only slightly in lysates from mock-infected cells. Maximal stimulation was obtained when a fraction containing eukaryotic initiation factors 4B (eIF-4B) and 4F (eIF-4F) was also present. In lysates from infected cells, these initiation factors increased endogenous cellular mRNA translation on the average 2-fold. In contrast, endogenous viral mRNA translation was increased to a much greater extent: the M protein was stimulated 8-fold, NS 5-fold, N 2.5-fold, and G 12-fold. When fractions containing eIF-4B, eIF-4F, or eIF-4A were added to these lysates in the presence of eIF-2, all three stimulated translation. Fractions containing rabbit reticulocyte initiation factors eIF-3 and eIF-6 had no effect on translation in either lysate. The results suggest that lysates from infected L cells are defective in the catalytic utilization of eIF-2 and deficient in mRNA binding protein activity.  相似文献   

10.
Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with 32P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or "unwind" mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. Our results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.  相似文献   

11.
12.
A cell-free protein synthesis system has been prepared from embryonic chick muscle; this system is dependent on initiation factor eukaryotic initiation factor 3 (eIF-3) and mRNA for efficient translation. Highly purified chick muscle eIF-3 has been fractionated into "core" and discriminatory components. In the presence of core eIF-3 from chick muscle or rabbit reticulocytes, myosin heavy chain mRNA is translated less efficiently than globin mRNA present in an equimolar concentration. When the discriminatory components are added to core eIF-3 from either source, myosin mRNA is translated with a greater efficiency. Thus, chick muscle eIF-3 contains components which allow it to recognize and stimulate specifically the translation of myosin mRNA in a muscle cell-free protein synthesis system.  相似文献   

13.
In the central nervous system, Zn(2+) is concentrated in the cerebral cortex and hippocampus and has been found to be toxic to neurons. In this study, we show that exposure of cultured cortical neurons from mouse to increasing concentrations of Zn(2+) (10-300 microM) induces a progressive decrease in global protein synthesis. The potency of Zn(2+) was increased by about 2 orders of magnitude in the presence of Na(+)-pyrithione, a Zn(2+) ionophore. The basal rate of protein synthesis was restored 3 h after Zn(2+) removal. Zn(2+) induced a sustained increase in phosphorylation of the alpha subunit of the translation eukaryotic initiation factor-2 (eIF-2alpha), whereas it triggered a transient increase in phosphorylation of eukaryotic elongation factor-2 (eEF-2). Protein synthesis was still depressed 60 min after the onset of Zn(2+) exposure while the state of eEF-2 phosphorylation had already returned to its basal level. Moreover, Zn(2+) was less effective than glutamate to increase eEF-2 phosphorylation, whereas it induced a more profound inhibition of protein synthesis. These results suggest that Zn(2+)-induced inhibition of protein synthesis mainly correlates with the increase in eIF-2alpha phosphorylation. Supporting further that Zn(2+) acts at the initiation step of protein synthesis, it strongly decreased the amount of polyribosomes.  相似文献   

14.
15.
The effects of the cyanobacterial toxin and protein phosphatase inhibitor, microcystin, on translation in rabbit reticulocyte lysates have been studied. Microcystin inhibited translation with similar potency to the protein phosphatase inhibitor okadaic acid. Unlike low concentrations of okadaic acid, however, it inhibited both the initiation and elongation stages. This was demonstrated using EGTA to inhibit the phosphorylation and inactivation of elongation factor eEF-2. A method for detecting changes in eEF-2 phosphorylation was developed. eEF-2 was found to exist as three different species: eEF-2 was largely monophosphorylated in reticulocyte lysates under control conditions, the remainder being unphosphorylated. Okadaic acid and microcystin increased the level of the bisphosphorylated species. The implications of multiple phosphorylation of eEF-2 for the control of translation is discussed. Microcystin was also found to increase the phosphorylation of eIF-2 alpha (and therefore to inhibit initiation) at lower concentrations than okadaic acid, suggesting that the major eIF-2 alpha phosphatase in the reticulocyte lysate is phosphatase-1.  相似文献   

16.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

17.
18.
19.
Translation of globin mRNA in a micrococcal nuclease-treated reticulocyte lysate was studied in the presence of increasing amounts of Mengovirus RNA, under conditions in which the number of translation initiation events remains constant as judged by the transfer of label from N-formyl[35S]methionyl-tRNAf into protein. The translation of globin mRNA is progressively inhibited by low concentrations of Mengovirus RNA, free of detectable traces of double-stranded RNA, concomitant with the increasing synthesis of Mengovirus RNA-directed products. On a molar basis, Mengovirus RNA apparently competes about 35 times more effectively than globin mRNA for a critical component in translation. The competition is relieved by the addition of highly purified eukaryotic initiation factor 2 (eIF-2). Addition of eIF-2 does not stimulate overall protein synthesis, but shifts it in favor of globin synthesis. No stimulation of globin mRNA translation by eIF-2 is seen when Mengovirus RNA is absent. These experiments show that Mengovirus RNA competes, directly or indirectly, with globin mRNA for eIF-2. In direct binding experiments using isolated mRNA and eIF-2, Mengovirus RNA is shown to compete with globin mRNA for eIF-2 and to exhibit a 30-fold higher affinity for this factor. The binding of Mengovirus RNA to eIF-2 is much more resistant to increasing salt concentrations than is the binding of globin mRNA, again reflecting its high affinity. These results reveal a direct correlation between the ability of these mRNA species to compete in translation and their ability to bind to initiation factor eIF-2. They suggest that the affinity of a given mRNA species for eIF-2 is essential in determining its translation, relative to that of other mRNA species. Messenger RNA competition for eIF-2 may contribute significantly to the selective translation of viral RNA in infected cells.  相似文献   

20.
Expression of antisense RNA against eukaryotic translation initiation factor 4E (eIF-4E) in HeLa cells causes a reduction in the levels of both eIF-4E and eIF-4 gamma (p220) and a concomitant decrease in the rates of both cell growth and protein synthesis (De Benedetti, A., Joshi-Barve, S., Rinker-Schaffer, C., and Rhoads, R. E. (1991) Mol. Cell Biol. 11, 5435-5445). The synthesis of most proteins in the antisense RNA-expressing cells (AS cells) is decreased, but certain proteins continue to be synthesized. In the present study, we identified many of these as stress-inducible or heat shock proteins (HSPs). By mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by reactivity with monoclonal antibodies generated against human HSPs, four of these were shown to be HSP 90, HSP 70, HSP 65, and HSP 27. The steady-state levels of HSP 90, 70, and 27 were elevated in relation to total protein in AS cells. Pulse labeling and immunoprecipitation indicated that HSP 90 and HSP 70 were synthesized more rapidly in AS cells than in control cells. The accelerated synthesis of HSPs in the AS cells was not due, however, to increased mRNA levels; the levels of HSP 90 and 70 mRNAs either remained the same or decreased after induction of antisense RNA expression. Actin mRNA, a typical cellular mRNA, was found on high polysomes in control cells but shifted to smaller polysomes in AS cells, as expected from the general decrease in translational initiation caused by eIF-4E and eIF-4 gamma depletion. HSP 90 and 70 mRNAs showed the opposite behavior; they were associated with small polysomes in control cells but shifted to higher polysomes in AS cells. These results demonstrate that HSP mRNAs have little or no requirement in vivo for the cap-recognition machinery and suggest that these mRNAs may utilize an alternative, cap-independent mechanism of translational initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号