首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure, thermotropic phase behavior, dynamic motion and order parameters of bilayer dispersions of egg phosphatidylcholine, egg sphingomyelin, egg ceramide and cholesterol have been determined. The coexistence of gel, liquid-ordered and liquid-disordered structure has been determined by peak fitting analysis of synchrotron X-ray powder patterns. Order parameters and extent of distribution of 16-doxyl-stearic acid spin probe between ordered and disordered environments has been estimated by ESR spectral simulation methods. The presence of ceramide in proportions up to 20 mol% in phosphatidylcholine is characterized by gel-fluid phase coexistence at temperatures up to 46 degrees C depending on the amount of ceramide. Cholesterol tends to destabilize the ceramide-rich domains formed in phosphatidylcholine while sphingomyelin, by formation of stable complexes with ceramide, tends to stabilize these domains. The stability of sphingomyelin-ceramide complexes is evident from the persistence of highly ordered structure probed by ESR spectroscopy and appearance of a sharp wide-angle X-ray reflection at temperatures higher than the gel-fluid transition of ceramide alone in egg phosphatidylcholine bilayers. The competition between ceramide and cholesterol for interaction with sphingomyelin is discussed in terms of control of lipid-mediated signaling pathways by sphingomyelinase and phospholipase A2.  相似文献   

2.
The structural transitions in aqueous dispersions of egg-sphingomyelin and bovine brain-sphingomyelin and sphingomyelin co-dispersed with different proportions of cholesterol were compared during temperature scans between 20° and 50 °C using small-angle and wide-angle X-ray scattering techniques. The Bragg reflections observed in the small-angle scattering region from pure phospholipids and codispersions of sphingomyelin:cholesterol in molar ratios 80:20 and 50:50 could all be deconvolved using peak fitting methods into two coexisting lamellar structures. Electron density profiles through the unit cell normal to the bilayer plane were calculated to derive bilayer and water layer thicknesses of coexisting structures at 20° and 50 °C. Codispersions of sphingomyelin:cholesterol in a molar ratio 60:40 consisted of an apparently homogeneous bilayer structure designated as liquid-ordered phase. Curve fitting analysis of the wide-angle scattering bands were applied to correlate changes in packing arrangements of hydrocarbon in the hydrophobic domain of the bilayer with changes in enthalpy recorded by differential scanning calorimetry. At 20 °C the wide-angle scattering bands of both pure sphingomyelins and codispersions of sphingomyelin and cholesterol could be deconvolved into two symmetric components. A sharp component located at a d-spacing of 0.42 nm was assigned to a gel phase in which the hydrocarbon chains are oriented perpendicular to the bilayer plane. A broader symmetric band centered at d-spacings in the region of 0.44 nm was assigned as disordered hydrocarbon in dispersions of pure sphingomyelin and as liquid-ordered phase in codispersions of sphingomyelin and cholesterol. It is concluded from the peak fitting analysis that cholesterol is excluded from gel phases of egg and brain sphingomyelins at 20 °C. The gel phases coexist with liquid-ordered phase comprised of egg-sphingomyelin and 27 mol% cholesterol and brain-sphingomyelin and 33 mol% cholesterol, respectively. Correlation of the disappearance of gel phase during heating scans and the enthalpy change recorded by calorimetry in codispersions of sphingomyelin and cholesterol leads to the conclusion that a major contribution to the broadened phase transition endotherm originates from dilution of the cholesterol-rich liquid-ordered phase by mobilization of sphingomyelin from the melting gel phase.  相似文献   

3.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 °C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

4.
Sphingomyelin hydrolysis by sphingomyelinase is essential in regulating membrane levels of ceramide, a well-known metabolic signal. Since natural sphingomyelins have a gel-to-fluid transition temperature in the range of the physiological temperatures of mammals and birds, it is important to understand the influence of the physical state of the lipid on the enzyme activity. With that aim, large unilamellar vesicles consisting of pure egg sphingomyelin (gel-to-fluid crystalline transition temperature ca. 39 degrees C) were treated with sphingomyelinase in the temperature range 10-70 degrees C. The vesicles were also examined by differential scanning calorimetry (DSC). Shingomyelinase was active on pure sphingomyelin bilayers, leading to concomitant lipid hydrolysis, vesicle aggregation, and leakage of aqueous liposomal contents. Enzyme activity was found to be much higher when the substrate was in the fluid than when it was in the gel state. Sphingomyelinase activity was found to exhibit lag times, followed by bursts of activity. Lag times decreased markedly when the substrate went from the gel to the fluid state. When egg phosphatidylcholine, or egg phosphatidylethanolamine were included in the bilayer composition together with sphingomyelin, sphingomyelinase activity at 37 degrees C, that was negligible for the pure sphingolipid bilayers, was seen to increase with the proportion of glycerophospholipid, while the latency times became progressively shorter. A DSC study of the mixed-lipid vesicles revealed that both phosphatidylcholine and phosphatidyletanolamine decreased in a dose-dependent way the transition temperature of sphingomyelin. Thus, as those glycerophospholipids were added to the membrane composition, the proportion of sphingomyelin in the fluid state at 37 degrees C increased accordingly, in this way becoming amenable to rapid hydrolysis by the enzyme. Thus sphingomyelinase requires the substrate in bilayer form to be in the fluid state, irrespective of whether this is achieved through a thermotropic transition or by modulating bilayer composition.  相似文献   

5.
Quinn PJ  Wolf C 《The FEBS journal》2010,277(22):4685-4698
Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase. Domains formed by sphingomyelin and cholesterol, however, represent relatively small proportions of the lipids found in membrane rafts and the properties of other raft lipids are not well characterized. We examined the structure of lipid bilayers comprised of aqueous dispersions of ternary mixtures of phosphatidylcholines and sphingomyelins from tissue extracts and cholesterol using synchrotron X-ray powder diffraction methods. Analysis of the Bragg reflections using peak-fitting methods enables the distinction of three coexisting bilayer structures: (a) a quasicrystalline structure comprised of equimolar proportions of phosphatidylcholine and sphingomyelin, (b) a liquid-ordered bilayer of phospholipid and cholesterol, and (c) fluid phospholipid bilayers. The structures have been assigned on the basis of lamellar repeat spacings, relative scattering intensities and bilayer thickness of binary and ternary lipid mixtures of varying composition subjected to thermal scans between 20 and 50 °C. The results suggest that the order created by the quasicrystalline phase may provide an appropriate scaffold for the organization and assembly of raft proteins on both sides of the membrane. Co-existing liquid-ordered structures comprised of phospholipid and cholesterol provides an additional membrane environment for assembly of different raft proteins.  相似文献   

6.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 degrees C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

7.
Veiga MP  Goñi FM  Alonso A  Marsh D 《Biochemistry》2000,39(32):9876-9883
The temperature dependences of the ESR spectra from different positional isomers of sphingomyelin and of phosphatidylcholine spin-labeled in their acyl chain have been compared in mixed membranes composed of sphingolipids and glycerolipids. The purpose of the study was to identify the possible formation of sphingolipid-rich in-plane membrane domains. The principal mixtures that were studied contained sphingomyelin and the corresponding glycerolipid phosphatidylcholine, both from egg yolk. Other sphingolipids that were investigated were brain cerebrosides and brain gangliosides, in addition to sphingomyelins from brain and milk. The outer hyperfine splittings in the ESR spectra of sphingomyelin and of phosphatidylcholine spin-labeled on C-5 of the acyl chain were consistent with mixing of the sphingolipid and glycerolipid components, in fluid-phase membranes. In the gel phase of egg sphingomyelin and its mixtures with phosphatidylcholine, the outer hyperfine splittings of sphingomyelin spin-labeled at C-14 of the acyl chain of sphingomyelin are smaller than those of the corresponding sn-2 chain spin-labeled phosphatidylcholine. This is in contrast to the situation with sphingomyelin and phosphatidylcholine spin-labeled at C-5, for which the outer hyperfine splitting is always greater for the spin-labeled sphingomyelin. The behavior of the C-14 spin-labels is attributed to a different geometry of the acyl chain attachments of the sphingolipids and glycerolipids that is consistent with their respective crystal structures. The two-component ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled at C-14 of the acyl chain directly demonstrate a broad two-phase region with coexisting gel and fluid domains in sphingolipid mixtures with phosphatidylcholine. Domain formation in membranes composed of sphingolipids and glycerolipids alone is related primarily to the higher chain-melting transition temperature of the sphingolipid component.  相似文献   

8.
We have examined the effects of cholesterol (Chol) on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylglycerols (PGs) by high-sensitivity differential scanning calorimetry and Fourier transform infrared and 31P NMR spectroscopy. We find that the incorporation of increasing quantities of Chol alters the temperature and progressively reduces the enthalpy and cooperativity of the gel-to-liquid-crystalline phase transition of the host PG bilayer. With dimyristoyl-PG:Chol mixtures, cooperative chain-melting phase transitions are completely or almost completely abolished at Chol concentrations near 50 mol%, whereas with the dipalmitoyl- and distearoyl-PG:Chol mixtures, cooperative hydrocarbon chain-melting phase transitions are still discernable at Chol concentrations near 50 mol%. We are also unable to detect the presence of significant populations of separate domains of the anhydrous or monohydrate forms of Chol in our binary mixtures, in contrast to previous reports. We ascribe the previously reported large scale formation of Chol crystallites to the fractional crystallization of the Chol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. We further show that the direction and magnitude of the change in the phase transition temperature induced by Chol addition is dependent on the hydrocarbon chain length of the PG studied. This finding agrees with our previous results with phosphatidylcholine bilayers, where we found that Chol increases or decreases the phase transition temperature in a hydrophobic mismatch-dependent manner (Biochemistry 1993, 32:516-522), but is in contrast to our previous results for phosphatidylethanolamine (Biochim. Biophys. Acta 1999, 1416:119-234) and phosphatidylserine (Biophys. J. 2000, 79:2056-2065) bilayers, where no such hydrophobic mismatch-dependent effects were observed. We also show that the addition of Chol facilitates the formation of the lamellar crystalline phase in PG bilayers, as it does in phosphatidylethanolamine and phosphatidylserine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of Chol. Moreover, the formation of the lamellar crystalline phase in PG bilayers at lower temperatures excludes Chol, resulting in an apparent Chol immiscibility in gel-state PG bilayers. We suggest that the magnitude of the effect of Chol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipids dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.  相似文献   

9.
The phase behaviour of mixed molecular species of phosphatidylethanolamine, phosphatidylserine and sphingomyelin of biological origin were examined in aqueous co-dispersions using synchrotron X-ray diffraction. The co-dispersions of phospholipids studied were aimed to model the mixing of lipids populating the cytoplasmic and outer leaflets in the resting or scrambled activated cell membrane. Mixtures enriched with phosphatidylethanolamine and phosphatidylserine were characterized by a phase separation of non-lamellar phases (cubic and inverted hexagonal) with a lamellar gel phase comprising the most saturated molecular species. Inclusion of sphingomyelin in the mixture resulted in a suppression of the hexagonal-II phase in favour of lamellar phases at temperatures where a proportion of the phospholipid was fluid. The effect was also dependent on the total amount of sphingomyelin in ternary mixtures, and the lamellar phase dominated in mixtures containing more than 30 mol%, irrespective of the relative proportions of phosphatidylserine/sphingomyelin. A transition from gel to liquid-crystal phase was detected by wide-angle scattering during heating scans of ternary mixtures enriched in sphingomyelin and was shown by thermal cycling experiments to be coupled with a hexagonal-II phase to lamellar transition. In such samples there was evidence of a coexistence of non-lamellar phases with a lamellar gel phase. A transition of the gel phase to the fluid state on heating from 35 to 41 °C was evidenced by a progressive increase in the lamellar d-spacing. The presence of calcium enhanced the phase separation of a lamellar gel phase from a hexagonal-II phase in mixtures enriched in phosphatidylserine. This effect was counteracted by charge screening with 150 mM NaCl. The effect of sphingomyelin on stabilizing the lamellar phase is discussed in the context of an altered composition in the cytoplasmic/outer leaflets of the plasma membrane resulting from scrambling of the phospholipid distribution. The results suggest that a lamellar structure can be retained by the inward translocation of sphingomyelin in biological membranes. The presence of monovalent cations serves also to stabilize the bilayer in activated cells where a translocation of aminoglycerophospholipids and an influx of calcium occur simultaneously.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SAXS small-angle X-ray scattering - SM sphingomyelin - WAXS wide-angle X-ray scattering - XRD X-ray diffraction  相似文献   

10.
Selectively deuterated N-palmitoyl sphingomyelins were studied by deuterium nuclear magnetic resonance spectroscopy ((2)H-NMR) to elucidate the backbone conformation as well as the interaction of the sphingolipids with glycerophospholipids. Macroscopic alignment of the lipid bilayers provided good spectral resolution and permitted the convenient control of bilayer hydration. Selective deuteration at the acyl chain carbons C(2) and C(3) revealed that the N-acyl chain performs a bend, similar to the sn-2 chain of the phosphatidylcholines. Profiles of C-D bond order parameters were derived from the segmental quadrupolar splittings for sphingomyelin alone and for sphingomyelin-phosphatidycholine mixtures. In the liquid-crystalline state, the N-acyl chain of sphingomyelin alone revealed significantly more configurational order than the chains of homologous disaturated or monounsaturated phosphatidylcholines. The average chain order parameters and the relative width of the order parameter distribution were correlated over a range of bilayer compositions. The temperature dependence of the (2)H-NMR spectra revealed phase separation in bilayers composed of sphingomyelin and monounsaturated phosphatidylcholine, in broad agreement with existing phase diagrams.  相似文献   

11.
Interaction of cholesterol with various glycerophospholipids and sphingomyelin   总被引:20,自引:0,他引:20  
M B Sankaram  T E Thompson 《Biochemistry》1990,29(47):10670-10675
The influence of cholesterol on the phase behavior of glycerophospholipids and sphingomyelins was investigated by spin-label electron spin resonance (ESR) spectroscopy. 4-(4,4-Dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoic acid (5-SASL) and 1-stearoyl-2-[4-(4,4-dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoy l]-sn- glycero-3-phosphocholine (5-PCSL) spin-labels were employed for this purpose. The outer hyperfine splitting constants, Amax, measured from the spin-label ESR spectra as a function of temperature were taken as empirical indicators of cholesterol-induced changes in the acyl chain motions in the fluid state. The Amax values of 5-PCSL exhibit a triphasic dependence on the concentration of cholesterol for phosphatidylcholines and bovine brain sphingomyelin. We interpret this dependence as reflecting the existence of liquid-disordered, ld, liquid-ordered, lo, and coexistence regions, ld + lo. The phase boundary between the ld and the two-phase region and the boundary between the lo and the two-phase region in the phosphatidylcholine-cholesterol systems coalesce at temperatures 25-33 degrees C above the main-chain melting transition temperature of the cholesterol-free phosphatidylcholine bilayers. In the case of bovine brain sphingomyelin, the ld-lo phase coalescence occurs about 47 degrees C above the melting temperature of the pure sphingomyelin. The selectivity of interaction of cholesterol with glycerophospholipids of varying headgroup charge was studied by comparing the cholesterol-induced changes in the Amax values of derivatives of phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine spin-labeled at the fifth position of the sn-2 chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol   总被引:13,自引:0,他引:13  
The paramagnetic resonance spectra of two spin-labels, 2,2,6,6-tetramethylpiperadinyl-1-oxy and a head-group spin-labeled phosphatidylethanolamine (L-alpha-dipalmitoylphosphatidyl-N-ethanolamine), have been used to study solid-liquid and liquid-liquid phase separations in binary mixtures of dimyristoylphosphatidylcholine and cholesterol. A quantitative analysis of these resonance spectra supports the view that at temperatures below theta m, the chain-melting temperature of the phospholipid, and at cholesterol mole fractions Xc less than 0.2, these mixtures consist of two phases, a solid phase of essentially pure dimyristoylphosphatidylcholine and a fluid phase having a mole fraction of cholesterol equal to 0.2. The spin-label data also provide evidence for fluid-fluid immiscibility in the bilayer membrane at temperatures above the chain melting transition temperature of dimyristoylphosphatidylcholine.  相似文献   

13.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C12-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron Lo domains but induces the formation of a gel-like phase. The activation of phospholipase A2 by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.  相似文献   

14.
X-ray diffraction from oriented bilayers of sphingomyelin gave up to 14 orders of diffraction of a lamellar repeat of 68.5 Å on the meridian and up to eight reflections, including a strong reflection at 4.2 Å, on the equator. The diffraction spacings did not change when the sphingomyelin bilayers were exposed to different humidities. A direct analysis of the low resolution X-ray data, using deconvolution is presented. A comparison of the Patterson functions of sphingomyelin with those of phosphatidylcholine and phosphatidylethanolamine suggests that the molecular structure of sphingomyelin in oriented bilayers resembles the structure of both phosphatidylcholine and phosphatidylethanolamine. Molecular model calculations for sphingomyelin bilayers have also been performed. Electron density profiles of sphingomyelin bilayers at resolution of about 6 Å and about 2.5 Å are presented. Our results indicate that the phosphorylcholine head group of sphingomyelin is in the plane of the membrane and at right angles to the hydrocarbon chains, the hydrocarbon chains are nearly parallel to each other, and there is only a limited, if any, interdigitation of the hydrocarbon chains of the adjacent sphingomyelin molecules in the bilayer.  相似文献   

15.
M B Sankaram  T E Thompson 《Biochemistry》1992,31(35):8258-8268
The gel-fluid phase equilibrium in a two-component system formed from dimyristoylphosphatidylcholine (DMPC) and distearoylphosphatidylcholine (DSPC) was investigated using solid-state wide-line 2H NMR spectroscopy. Analysis of the spectral first moments and the quantitation of gel and fluid phases by means of difference spectroscopy provided the temperature-composition phase diagrams. Phase diagrams were constructed for mixtures of perdeuterated DMPC, DMPC-d54, with DSPC and for the complementary system comprised of DMPC and perdeuterated DSPC, DSPC-d70. The gel-fluid coexistence region was found to extend over a wider range of temperature and composition for the DMPC-d54-DSPC system than for the DMPC-DSPC-d70 system. Comparison of these data with the phase diagram for the DMPC-DSPC system showed that in the gel-fluid region the fraction of lipids in the fluid phase at a given temperature and system composition decreases for the three systems in the order DMPC-d54-DSPC greater than DMPC-DSPC greater than DMPC-DSPC-d70. While the fluid fraction varies by as much as 90% among the three systems, the composition of the fluid phase, i.e., the ratio of the concentrations of the two molecules in the fluid phase, varies by about 20% over the whole temperature and system composition range. The effective acyl chain lengths of the DMPC-d54 and DSPC-d70 molecules as a function of temperature and composition in the fluid phase, when the system is all fluid or is in the gel-fluid coexistence region, were calculated from the quadrupole splittings in the axially symmetric powder patterns obtained for the all-fluid phase. The magnitudes of the coefficient of thermal expansion for both the DMPC-d54 and the DSPC-d70 molecules were smaller in the fluid phase of binary mixtures than in one-component bilayers containing either DSPC-d70 or DMPC-d54 alone. In addition, at any given temperature in the fluid phase, the increase in the acyl chain length of DMPC-d54 with increasing DSPC content of the system was smaller than the concomitant increase in the length of DSPC-d70 in mixtures with DMPC. In the entire temperature and composition range when the binary mixtures are in the all-fluid or in the gel-fluid coexistence region, the largest value obtained for the DMPC-d54 molecule in the fluid phase was smaller than the smallest value obtained for the DSPC-d70 molecule in the fluid phase. The acyl chain lengths were used to calculate the effective weighted-average thickness, d, of the fluid phase bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Quinn PJ 《The FEBS journal》2011,278(18):3518-3527
Specific lipid-lipid interactions are believed to be responsible for lateral domain formation in the lipid bilayer matrix of cell membranes. The miscibility of glucocerebroside and sphingomyelin extracted from biological tissues has been examined by synchrotron X-ray powder diffraction methods. Fully hydrated binary mixtures of egg-sphingomyelin codispersed with glucosylceramide rich in saturated C22 and C24 N-acyl fatty acids were subjected to heating scans between 20 and 90 °C at 2 °C·min(-1). X-ray scattering intensity profiles were recorded at 1 °C intervals simultaneously in both small-angle and wide-angle scattering regions. A gel phase characterized by a single symmetric peak in the wide-angle scattering region was transformed in all mixtures examined to a fluid phase at about 40 °C, similar to dispersions of pure egg-sphingomyelin. A coexisting lamellar structure was identified at temperatures up to about 75 °C which was characterized by a broad Bragg reflection. The scattering intensity of this structure increased relative to the structure assigned as bilayers of pure sphingomyelin with increasing proportions of glucosylceramide in the mixture. The relationship between the scattering intensities of the two peaks and the relative mass fractions of the two lipids showed that the bilayers assigned to a glucosylceramide-rich structure were composed of sphingomyelin and glucosylceramide in molar ratios of 1 : 1 and 2 : 1, respectively, at temperatures below and above the order-disorder phase transition temperature of the sphingomyelin (40 °C).  相似文献   

17.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (?o) and liquid-disordered (?d) phases display significantly different polarities. Moreover, in the ?o phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 °C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

18.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

19.
The work presented here demonstrates that the phenomenon of spontaneous vesiculation is not restricted to charged lipids and lipid mixtures, but occurs also in isoelectric phospholipid mixtures consisting of egg phosphatidylcholine (EPC) and egg lysophosphatidylcholine (lyso-EPC). 1H high-resolution NMR and freeze-fracture electron microscopy have been used to characterize the mixed EPC/lyso EPC dispersions in excess H2O. The predominant phase in these mixed phospholipid dispersions is smectic (lamellar) at least up to approximately 70% lysophosphatidylcholine. The type of phospholipid aggregate formed in excess H2O depends on the mole ratio diacyl to monoacyl phosphatidylcholine. The dispersive (lytic) action of lysophosphatidylcholine on phosphatidylcholine bilayers becomes effective at lysophospholipid contents in excess of approximately 10%. Large multilamellar liposomes are disrupted and replaced by smaller particles, mainly unilamellar vesicles. Between 30 and 70% lysophosphatidylcholine a significant proportion of the total phospholipid is present as small unilamellar vesicles (SUV) of a diameter of 23 nm (range: 20-70 nm). At even higher lysophosphatidylcholine contents the fraction of phospholipid present as small mixed micelles with a diameter smaller than about 14 nm grows at the expense of the vesicular structures. There is a second effect of increasing the quantity of lysophosphatidylcholine in phosphatidylcholine bilayers: the presence of lysophosphatidylcholine in excess of 10% renders the phospholipid bilayer more permeable to ions as compared to pure phosphatidylcholine bilayers. The key factor in inducing spontaneous vesiculation is probably not the charge but the wedge-like shape of the lysophospholipid molecule. The molecular shape may give rise to an asymmetric distribution of lysophosphatidylcholine between the two halves of the bilayer, thus stabilizing highly curved bilayers as present in SUV.  相似文献   

20.
Crane JM  Tamm LK 《Biophysical journal》2004,86(5):2965-2979
Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号