首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.  相似文献   

2.
Haney EF  Nazmi K  Lau F  Bolscher JG  Vogel HJ 《Biochimie》2009,91(1):141-154
Human lactoferrampin is a novel antimicrobial peptide found in the cationic N-terminal lobe of the iron-binding human lactoferrin protein. The amino acid sequence that directly corresponds to the previously characterized bovine lactoferrin-derived lactoferrampin peptide is inactive on its own (WNLLRQAQEKFGKDKSP, residues 269-285). However, by increasing the net positive charge near the C-terminal end of human lactoferrampin, a significant increase in its antibacterial and Candidacidal activity was obtained. Conversely, the addition of an N-terminal helix cap (sequence DAI) did not have any appreciable effect on the antibacterial or antifungal activity of human lactoferrampin peptides, even though it markedly influenced that of bovine lactoferrampin. The solution structure of five human lactoferrampin variants was determined in SDS micelles and all of the structures display a well-defined amphipathic N-terminal helix and a flexible cationic C-terminus. Differential scanning calorimetry studies indicate that this peptide is capable of inserting into the hydrophobic core of a membrane, while fluorescence spectroscopy results suggest that a hydrophobic patch encompassing the single Trp and Phe residues as well as Leu, Ile and Ala side chains mediates the interaction between the peptide and the hydrophobic core of a phospholipid bilayer.  相似文献   

3.
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.  相似文献   

4.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in the VSV G protein, comprising the residues 145-164, directly involved in membrane interaction and fusion. In the present work we studied the interaction of pep[145-164] with membranes using NMR to solve the structure of the peptide in two membrane-mimetic systems: SDS micelles and liposomes composed of phosphatidylcholine and phosphatidylserine (PC:PS vesicles). The presence of medium-range NOEs showed that the peptide has a tendency to form N- and C-terminal helical segments in the presence of SDS micelles. Analysis of the chemical shift index indicated helix-coil equilibrium for the C-terminal helix under all conditions studied. At pH 7.0, the N-terminal helix also displayed a helix-coil equilibrium when pep[145-164] was free in solution or in the presence of PC:PS. Remarkably, at the fusogenic pH, the region of the N-terminal helix in the presence of SDS or PC:PS presented a third conformational species that was in equilibrium with the helix and random coil. The N-terminal helix content decreases pH and the minor beta-structured conformation becomes more prevalent at the fusogenic pH. These data point to a beta-conformation as the fusogenic active structure-which is in agreement with the X-ray structure, which shows a beta-hairpin for the region corresponding to pep[145-164].  相似文献   

5.
This work advances bottom‐up design of bioinspired materials built from peptide‐amphiphiles, which are a class of bioconjugates in which a biofunctional peptide is covalently attached to a hydrophobic moiety that drives self‐assembly in aqueous solution. Specifically, this work highlights the importance of peptide contour length in determining the equilibrium secondary structure of the peptide as well as the self‐assembled (i.e., micelle) geometry. Peptides used here repeat a seven‐amino acid sequence between one and four times to vary peptide contour length while maintaining similar peptide‐peptide interactions. Without a hydrophobic tail, these peptides all exhibit a combination of random coil and α‐helical structure. Upon self‐assembly in the crowded environment of a micellar corona, however, short peptides are prone to β‐sheet structure and cylindrical micelle geometry while longer peptides remain helical in spheroidal micelles. The transition to β‐sheets in short peptides is rapid, whereby amphiphiles first self‐assemble with α‐helical peptide structure, then transition to their equilibrium β‐sheet structure at a rate that depends on both temperature and ionic strength. These results identify peptide contour length as an important control over equilibrium peptide secondary structure and micelle geometry. Furthermore, the time‐dependent nature of the helix‐to‐sheet transition opens the door for shape‐changing bioinspired materials with tunable conversion rates. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 573–581, 2013.  相似文献   

6.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

7.
The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides.  相似文献   

8.
Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection.  相似文献   

9.
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using 1H-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.  相似文献   

10.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an α-helix content of approximately 42%. The α-helix comprises an uninterrupted hydrophobic stretch of ≤12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15–75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10−4 seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed. © 1997 Wiley-Liss Inc.  相似文献   

11.
Li Y  Tamm LK 《Biophysical journal》2007,93(3):876-885
A thorough understanding of the structure of fusion domains of enveloped viruses in changing lipid environments helps us to formulate mechanistic models on how they might function in mediating viral entry by membrane fusion. We have expressed the N-terminal fusion domain of HIV-1 gp41 as a construct that is water-soluble in the absence of membranes, but that also binds with high affinity to lipid micelles and bilayers in their presence. We have solved the structure and studied the dynamics of this domain bound to dodecylphosphocholine micelles by homo- and heteronuclear NMR spectroscopy. The fusion peptide forms a stable hydrophobic helix from Ile(4) to Ala(14), but is increasingly more disordered and dynamic in a segment of intermediate polarity that stretches from Ala(15) to Ser(23). When bound to lipid bilayers at low concentration, the HIV fusion domain is also largely alpha-helical, as determined by CD and FTIR spectroscopy. However, at higher protein/lipid ratios, the domain is partially converted to form beta-structures in lipid bilayers. Controlled lipid mixing occurs at concentrations that support the alpha-helical, but not the beta-strand conformation.  相似文献   

12.
Booth V  Waring AJ  Walther FJ  Keough KM 《Biochemistry》2004,43(48):15187-15194
Although the membrane-associated surfactant protein B (SP-B) is an essential component of lung surfactant, which is itself essential for life, the molecular basis for its activity is not understood. SP-B's biophysical functions can be partially mimicked by subfragments of the protein, including the C-terminus. We have used NMR to determine the structure of a C-terminal fragment of human SP-B that includes residues 63-78. Structure determination was performed both in the fluorinated alcohol hexafluoro-2-propanol (HFIP) and in sodium dodecyl sulfate (SDS) micelles. In both solvents, residues 68-78 take on an amphipathic helical structure, in agreement with predictions made by comparison to homologous saposin family proteins. In HFIP, the five N-terminal residues of the peptide are largely unstructured, while in SDS micelles, these residues take on a well-defined compact conformation. Differences in helical residue side chain positioning between the two solvents were also found, with better agreement between the structures for the hydrophobic face than the hydrophilic face. A paramagnetic probe was used to investigate the position of the peptide within the SDS micelles and indicated that the peptide is located at the water interface with the hydrophobic face of the helix oriented inward, the hydrophilic face of the helix oriented outward, and the N-terminal residues even farther from the micelle center than those on the hydrophilic face of the alpha-helix. Interactions of basic residues of SP-B with anionic lipid headgroups are known to have an impact on function, and these studies demonstrate structural ramifications of such interactions via the differences observed between the peptide structures determined in HFIP and SDS.  相似文献   

13.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   

14.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell–cell fusion. The N-terminal fusion peptide (FP, residues 770–788), an internal fusion peptide (IFP, residues 873–888) and the pre-transmembrane region (PTM, residues 1185–1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix–loop–helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV.  相似文献   

15.
Peptide III is a 20-residue synthetic model peptide based on the fusion peptide of influenza virus A/PR/8/34 strain and takes a secondary structure similar to the original peptide. While conserving the amphiphilic helical nature, 20 peptides to modify the bulkiness of side chains of peptide III were synthesized, and acid-induced membrane destabilization was assessed by aqueous content leakage from large unilamellar vesicles. Substitutions on the hydrophobic side decreased activity but showed less effect on the hydrophilic side, which confirmed the importance of the hydrophobic side for interaction with the membrane. Interestingly, substitution at the 13th Gly residue enhanced the amphiphilic helical nature but severely reduced activity. Correlation between alpha-helical content at acidic pH and the activity was not recognized, suggesting rather that the importance of this site was due to helix termination by glycine which allows N-terminal and C-terminal halves to behave as different secondary structural units.  相似文献   

16.
Pol peptide, an oligopeptide corresponding to the 27 C-terminal amino acids of DNA polymerase from herpes simplex virus type 1, has recently been suggested to translocate from endosomal compartments into the cytosol after being intracellularly delivered via a protein carrier. While an acidic environment was thought to be important for Pol peptide membrane translocation, the mechanism of translocation remains unclear. To investigate the influence of an acidic environment on the conformational properties of the peptide and on its propensity to interact with lipid bilayers, we characterized the structure of Pol peptide at different pH values by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. The influence of detergent micelles, which mimic biological lipid membranes, on the peptide secondary structure was also studied. Our CD results indicate that the peptide is in a random conformation in aqueous solution at both acidic and basic pH, whereas in the presence of dodecylphosphocholine (DPC) micelles, it assumes a partial alpha-helical structure which is significantly pH-dependent. An NMR study confirmed that, in the presence of DPC micelles, a short C-terminal alpha-helix is present at pH 6.5, whereas almost two-thirds of the peptide (residues 10-26) fold into an extended amphipathic alpha-helix at pH 4.0. The orientation of Pol peptide relative to the DPC micelle was investigated using paramagnetic probes at both pH 4.0 and 6.5. These studies show that the peptide inserts deeply into the micelle at pH 4.0, whereas it is more exposed to the aqueous environment at pH 6.5. On the basis of these results, a model which might explain the mechanism of translocation of Pol peptide from acidic endosomes to the cytosol is discussed.  相似文献   

17.
一种抗菌肽和aFGF融合蛋白的构建和表达   总被引:3,自引:2,他引:1  
利用PCR技术扩增出带有凝血酶Xa因子切割位点的天蚕素蜂毒素杂合肽和aFGF的融合基因,插入大肠杆菌表达载体pET-3c中,构建出表达质粒pET-aF-CM,并转化至大肠杆菌BL21(DE3)中,氨苄青霉素抗性筛选重组转化子。IPTG诱导4h后,以包涵体形式表达的融合蛋白约占菌体总蛋白的17%。将包涵体溶解后透析复性,并利用肝素亲和层析纯化,得到电泳纯的融合蛋白。Western blot分析表明,该蛋白能与aFGF抗体产生免疫反应。MTT法检测显示,融合蛋白具有促3T3Bal/b细胞分裂活性,其比活为1.471×106IU/mg。利用凝血酶Xa因子裂解融合蛋白,可以获得抗菌肽和含凝血酶Xa因子裂解序列的aFGF蛋白。分子筛回收含杂合抗菌肽,抑菌活性检测表明其对大肠杆菌K12D31具有明显抑菌活性。微量稀释法检测结果表明,回收的抗菌肽对大肠杆菌DH5α、大肠杆菌K12D31、沙门氏菌、金黄色葡萄球菌、枯草芽孢杆菌和绿脓杆菌的MIC分别达6.25μg/ml、10μg/ml、2.5μg/ml、1.25μg/ml、0.625μg/ml和5μg/ml。  相似文献   

18.
Y Levy  E Hanan  B Solomon  O M Becker 《Proteins》2001,45(4):382-396
A set of 34 molecular dynamic (MD) simulations totaling 305 ns of simulation time of the prion protein-derived peptide PrP106-126 was performed with both explicit and implicit solvent models. The objective of these simulations is to investigate the relative stability of the alpha-helical conformation of the peptide and the mechanism for conversion from the helix to a random-coil structure. At neutral pH, the wild-type peptide was found to lose its initial helical structure very fast, within a few nanoseconds (ns) from the beginning of the simulations. The helix breaks up in the middle and then unwinds to the termini. The spontaneous transition into the random coil structure is governed by the hydrophobic interaction between His(111) and Val(122). The A117V mutation, which is linked to GSS disease, was found to destabilize the helix conformation of the peptide significantly, leading to a complete loss of helicity approximately 1 ns faster than in the wild-type. Furthermore, the A117V mutant exhibits a different mechanism for helix-coil conversion, wherein the helix begins to break up at the C-terminus and then gradually to unwind towards the N-terminus. In most simulations, the mutation was found to speed up the conversion through an additional hydrophobic interaction between Met(112) and the mutated residue Val(117), an interaction that did not exist in the wild-type peptide. Finally, the beta-sheet conformation of the wild-type peptide was found to be less stable at acidic pH due to a destabilization of the His(111)-Val(122), since at acidic pH this histidine is protonated and is unlikely to participate in hydrophobic interaction.  相似文献   

19.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

20.
PW2 is an anticoccidial peptide active against Eimeria acervulina and Eimeria tenella. We determined the structure of PW2 in dodecylphosphocholine micelles. The structure showed two distinct regions: an amphipathic N-terminal 310 helix and an aromatic region containing WWR interface-binding motif. The aromatic region acted as a scaffold of the protein in the interface and shared the same structure in both DPC and SDS micelles. N-terminal helix interacted with DPC but not with SDS interface. Chemical shift change was slow when SDS was added to PW2 in DPC and fast when DPC was added to PW2 in SDS, indicating that interaction with DPC micelles was kinetically more stable than with SDS micelles. Also, DPC interface was able to accommodate PW2, but it maintained the conformational arrangement in the aromatic region observed for SDS micelles. This behavior, which is different from that observed for other antimicrobial peptides with WWR motif, may be associated with the absence of PW2 antibacterial activity and its selectivity for Eimeria parasites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Deposits: PDB code 2JQ2 and BMRB accession number 15267.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号