首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In Escherichia coli and other bacteria, MinD, along with MinE and MinC, rapidly oscillates from one pole of the cell to the other controlling the correct placement of the division septum. MinD binds to the membrane through its amphipathic C-terminal α-helix. This binding, promoted by ATP-induced dimerization, may be further enhanced by a consequent attraction of acidic phospholipids and formation of a stable proteolipid domain. In the context of this hypothesis we studied changes in dynamics of a model membrane caused by MinD binding using membrane-embedded fluorescent probes as reporters. A remarkable increase in membrane viscosity and order upon MinD binding to acidic phospholipids was evident from the pyrene and DPH fluorescence changes. This viscosity increase is cooperative with regards to the concentration of MinD-ATP, but not of the ADP form, indicative of dimerization. Moreover, similar changes in the membrane dynamics were demonstrated in the native inverted cytoplasmic membranes of E. coli, with a different depth effect. The mobility of pyrene-labeled phosphatidylglycerol indicated formation of acidic phospholipid-enriched domains in a mixed acidic-zwitterionic membrane at specific MinD/phospholipid ratios. A comparison between MinD from E. coli and Neisseria gonorrhea is also presented.  相似文献   

2.
MinD, a well-conserved bacterial amphitropic protein involved in spatial regulation of cell division, has a typical feature of reversible binding to the membrane. MinD shows a clear preference for acidic phospholipids organized into lipid domains in bacterial membrane. We have shown that binding of MinD may change the dynamics of model and native membranes (see accompanying paper [1]). On the other hand, MinD dimerization and anchoring could be enhanced on pre-existing anionic phospholipid domains. We have tested MinD binding to model membranes in which acidic and zwitterionic phospholipids are either well-mixed or segregated to phase domains. The phase separation was achieved in binary mixtures of 1-Stearoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol] (SOPG) with 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC) or 1,2-Distearoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DSPG) and binding to these membranes was compared with that to a fluid mixture of SOPG with 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (SOPC). The results demonstrate that MinD binding to the membrane is enhanced by segregation of anionic phospholipids to fluid domains in a gel-phase environment and, moreover, the protein stabilizes such domains. This suggests that an uneven binding of MinD to the heterogeneous native membrane is possible, leading to formation of a lipid-specific distribution pattern of MinD and/or modulation of its temporal behavior.  相似文献   

3.
The retention and binding mechanisms in electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (covalent attachment of polyethylene glycol chains to protein) were investigated using our previously developed model. Lysozyme and bovine serum albumin were chosen as model proteins. The retention volume of PEGylated proteins shifted to lower elution volumes with increasing PEG molecular weight compared with the non-modified (native) protein retention volume. However, PEGylation did not affect the number of binding sites appreciably. The enzyme activity of PEGylated lysozyme measured with a standard insoluble substrate in suspension decreased considerably, whereas the activity with a soluble small-molecule substrate did not drop significantly. These findings indicate that when a protein is mono-PEG-ylated, the binding site is not affected and the elution volume reduces due to the steric hindrance between PEGylated protein and ion-exchange ligand.  相似文献   

4.
Two classes of molecules inhibit the catalytic subunit (C) of the cyclic AMP-dependent protein kinase (cAPK), the heat-stable protein kinase inhibitors (PKIs) and the regulatory (R) subunits. Basic sites on C, previously identified as important for R/C interaction in yeast TPKI and corresponding to Lys213, Lys217, and Lys189 in murine Cα, were replaced with either Ala or Thr and characterized for their kinetic properties and ability to interact with RI and PKI. rC(K213A) and rC(K217A) were both defective in forming holoenzyme with RI but were inhibited readily with PKI. This contrasts with rC(R133A), which is defective in binding PKI but not RI (Wen & Taylor, 1994). Thus, the C-subunit employs two distinct electrostatic surfaces to achieve high-affinity binding with these two types of inhibitory molecules even though all inhibitors share a common consensus site that occupies the active site cleft. Unlike TPK1, mutation of Lys189 had no effect. The mutant C subunits that were defective in binding RI, rC(K213A) and rC(K217A), were then paired with three RI mutants, rRI(D140A), rRI(E143A), and rRI(D258A), shown previously to be defective in recognition of C. Although the mutations at Asp140 and Asp258 in RI were additive with respect to the C mutations, rC(K213A) and rRI(E143A) were compensatory, thus identifying a specific electrostatic interaction site between RI and C. The results are discussed in terms of the RI and C crystal structures and the sequence homology between the yeast and mammalian enzymes.  相似文献   

5.
In this work, we demonstrate that the inclusion of long-range interactions has a significant impact on the estimation of ligand–protein binding energies. Within the scope of the electrostatically embedded adaptation of the molecular fragmentation with conjugated caps (EE-AMFCC) scheme, we unveil the role played by long-range contributions in distinct levels of quantum mechanical calculations. As a prototypical system, we consider ibuprofen coupled to the human serum albumin. In particular, we show that some relevant ligand–residue interaction energies can only be accurately captured in density functional theory (DFT) approaches when the electrostatic background is properly represented by an explicit point charge distribution.
Graphical Abstract (left) The binding site FA3/FA4 of HSA containing the attached IBU. (right) Absolute value of difference between the biding energies calculated including the electrostatic embedding and the energies calculated without the electrostatic embedding using the HF, B3LYP, CAM-B3LYP, and MP2 methodologies
  相似文献   

6.
Lin Z  Cui S  Zhang H  Chen Q  Yang B  Su X  Zhang J  Jin Q 《Analytical biochemistry》2003,319(2):239-243
3-Mercaptopropyl acid-stabilized CdTe nanoparticles synthesized in aqueous solution are effectively bound to a biomacromolecule, papain, via electrostatic interaction. The conjugation between the nanoparticles and the papain is demonstrated by UV-Vis absorption, photoluminescence spectroscopy, transmission electron microscopy, and fluorescence micrographs. The biological activity of papain is maintained after the conjugation. The effects of the quantity of papain and the size of nanoparticles on the fluorescence characteristics of the CdTe-papain bioconjugates were studied.  相似文献   

7.
In an attempt to establish a bioreactor system for generation of HIV that is practicable, efficient, biologically contained, and capable of scale up, the production of two strains of this virus was examined in suspension culture and the Porosphere fixed bed system. HIV 1 and HIV 2 were grown successfully in both these types of reactor. The porosphere reactor theoretically appears to offer a better environment for HIV production, but evidence for significantly improved yields from this system, compared to suspension, was equivocal. However, this configuration facilitated media changes during culture. The data clearly showed that the culture system and cell environment significantly affected cell-virus interrelationships. Switches between lytic — and persistent — type infections, and changes in the virus population were observed.  相似文献   

8.
Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. We previously investigated the gene expression profile and found that many of differentiation-related genes expressed in a temporally regulated manner. In this study, we attempted to find the hub-molecules and their intracellular signaling networks during keratinocyte differentiation using in silico analysis of data obtained from previous studies. We used protein-protein interaction prediction software called PSIMAP, and drew a hypothetical signaling network. We chose one candidate hub-molecule SHC1 that were predicted to link EGFR and MAPK signal, and then evaluated the protein-protein interactions experimentally. As predicted, SHC1 bound to the MEK1 in an EGF-regulated manner. Furthermore, SHC1 bound to the MEK1 and p38 MAPK in a keratinocyte differentiation dependent manner. These results demonstrate that in silico protein-protein interaction prediction system can be used to efficiently and cost-effectively select the experimental candidates.  相似文献   

9.
Residual dipolar couplings in the denatured state of bovine acyl-coenzyme A binding protein (ACBP) oriented in strained polyacrylamide gels have been shown to be a sensitive, sequence-specific probe for residual secondary structure. Results supporting this were obtained by comparing residual dipolar couplings under different denaturing conditions. The data were analyzed using the program molecular fragment replacement (MFR), which demonstrated alpha-helix propensity in four isolated stretches along the protein backbone, and these coincide with the location of native helices. This is in full agreement with earlier findings based on secondary chemical shift values. Furthermore, N-H residual dipolar couplings provided direct evidence for the existence of native-like hydrophobic interactions in the acid-denatured state of ACBP at pH 2.3. It was shown that replacement of the hydrophobic side-chain of residue Ile27 with alanine in helix A2 leads to large decreases of residual dipolar couplings in residues that form helix A4 in the native state. It is suggested that the Ile to Ala mutation changes the probability for the formation of long-range interactions, which are present in the acid-denatured state of the wild-type protein. These long-range interactions are similar to those proposed to form in the transition state of folding of ACBP. Therefore, the application of residual dipolar couplings in combination with a comparative mutation study has demonstrated the presence of precursors to the folding transition state under acid-unfolding conditions.  相似文献   

10.
The role of fatty acid binding proteins as intracellular fatty acid transporters may require their direct interaction with membranes. In this way different mechanisms have been previously characterized through experimental studies suggesting different models for FABPs-membrane association, although the process in which the molecule adsorbs to the membrane remains to be elucidated. To estimate the importance of the electrostatic energy in the FABP-membrane interaction, we computationally modeled the interaction of different FABPs with both anionic and neutral membranes. Free Electrostatic Energy of Binding (dE), was computed using Finite Difference Poisson Boltzmann Equation (FDPB) method as implemented in APBS (Adaptive Poisson Boltzmann Solver). Based on the computational analysis, it is found that recruitment to membranes is facilitated by non-specific electrostatic interactions. Also energetic analysis can quantitatively differentiate among the mechanisms of membrane association proposed and determinate the most energetically favorable configuration for the membrane-associated states of different FABPs. This type of calculations could provide a starting point for further computational or experimental analysis.  相似文献   

11.
High-throughput proteomics technologies, especially the yeast two-hybrid system, produce large volumes of protein-protein interaction data organized in networks. The complete sequencing of many genomes raises questions about the extent to which such networks can be transferred between organisms. We attempted to answer this question using the experimentally derived Helicobacter pylori interaction map and the recently described interacting domain profile pair (IDPP) method to predict a virtual map for Escherichia coli. The extensive literature concerning E.coli was used to assess all predicted interactions and to validate the IDPP method, which clusters protein domains by sequence and connectivity similarities. The IDPP method has a much better heuristic value than methods solely based on protein homology. The IDPP method was further applied to Campylobacter jejuni to generate a virtual interaction map. An in-depth comparison of the chemotaxis pathways predicted in E.coli and C.jejuni led to the proposition of new functional assignments. Finally, the prediction of protein-protein interaction maps across organisms enabled us to validate some of the interactions on the original experimental map.  相似文献   

12.
In this study the distribution of optimum temperatures for the induction of citrus blossoms in Israel has been determined. The number of flowers that form on citrus plants grown in the subtropics is known to be affected by the temperatures to which the plants are exposed. However, too few records of hourly temperatures exist in Israel to make an estimate of the occurrence and/or distribution of temperatures beneficial for citrus flower induction, although maximum and minimum temperatures are widely recorded. Thus, a model derived from the hourly records could be applied to the stations recording only maximum and minimum temperatures. The average optimum temperature was mapped for citrus flower induction throughout Israel.  相似文献   

13.
The midpoint redox potentials (E(m)) of all cofactors in photosystem I from Synechococcus elongatus as well as of the iron-sulfur (Fe(4)S(4)) clusters in two soluble ferredoxins from Azotobacter vinelandii and Clostridium acidiurici were calculated within the framework of a semi-continuum dielectric approach. The widely used treatment of proteins as uniform media with single dielectric permittivity is oversimplified, particularly, because permanent charges are considered both as a source for intraprotein electric field and as a part of dielectric polarizability. Our approach overcomes this inconsistency by using two dielectric constants: optical epsilon(o)=2.5 for permanent charges pre-existing in crystal structure, and static epsilon(s) for newly formed charges. We also take into account a substantial dielectric heterogeneity of photosystem I revealed by photoelectric measurements and a liquid junction potential correction for E(m) values of relevant redox cofactors measured in aprotic solvents. We show that calculations based on a single permittivity have the discrepancy with experimental data larger than 0.7 V, whereas E(m) values calculated within our approach fall in the range of experimental estimates. The electrostatic analysis combined with quantum chemistry calculations shows that (i) the energy decrease upon chlorophyll dimerization is essential for the downhill mode of primary charge separation between the special pair P(700) and the primary acceptor A(0); (ii) the primary donor is apparently P(700) but not a pair of accessory chlorophylls; (iii) the electron transfer from the A branch quinone Q(A) to the iron-sulfur cluster F(X) is most probably downhill, whereas that from the B branch quinone Q(B) to F(X) is essentially downhill.  相似文献   

14.
Electrostatic interactions between a basic epitope containing adjacent arginine residues and an acidic epitope containing a phosphorylated serine are involved in receptor heteromerization. In the present study, we demonstrate that this arginine-phosphate electrostatic interaction possesses a "covalent-like" stability. Hence, these bonds can withstand fragmentation by mass spectrometric collision-induced dissociation at energies similar to those that fragment covalent bonds and they demonstrate an extremely low dissociation constant by plasmon resonance. The present work also highlights the importance of phosphorylation-dephosphorylation events in the modulation of this electrostatic attraction. Phosphorylation of the acidic epitope, a casein kinase one consensus site, makes it available to interact with the basic epitope. On the other hand, phosphorylation of serine and/or threonine residues adjacent to the basic epitope, a protein kinase A consensus site, slows down the attraction between the epitopes. Although analyzed here in the frame of receptor heteromerization, the arginine-phosphate electrostatic interaction most likely represents a general mechanism in protein-protein interactions.  相似文献   

15.
蛋白质相互作用研究有助于揭示生命过程的许多本质问题,也有助于疾病预防、诊断,对药物研制具有重要的参考价值。文章首先构建出蛋白质作用数据库,提出分段氨基酸组成成分特征提取方法来预测蛋白质相互作用。10CV检验下,基于支持向量机的3段氨基酸组成成分特征提取方法的预测总精度为86.2%,比传统的氨基酸组成成分方法提高2.31个百分点;采用Guo的数据库和检验方法,3段氨基酸组成成分特征提取方法的预测总精度为90.11%,比Guo的自相关函数特征提取方法提高2.75个百分点,从而表明分段氨基酸组成成分特征提取方法可有效地应用于蛋白质相互作用预测。  相似文献   

16.
自然条件下,微生物以一种复杂的群落形式生活,细胞周围充斥着由相邻细胞产生的各类代谢物,使各细胞间存在多样的互作形式,影响彼此的生长。不同种类的菌株共培养时,营养缺陷型菌株可以利用其他菌株产生的代谢产物进行生长;共培养还可以改变微环境、刺激菌株沉默基因的表达及改变菌株的生存状态。近年来,基于模拟菌株间的互作关系而发展起来的共培养技术逐步应用于未培养微生物的分离工作中,并被认为能有效提高未培养微生物的分离效率。结合已发表的相关文献资料,综合分析潜在共培养的类群多样性以及共培养分离技术的先进性与应用现状等,以期为微生物分离技术的发展及微生物资源的发掘提供参考。  相似文献   

17.
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N- succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.  相似文献   

18.
We evaluated the role of nonspecific electrostatic binding in the interaction of antithrombin (AT) with heparin (Hp), a paradigmatic protein-glycosaminoglycan (GAG) system. To do so, we obtained the ionic-strength dependence of the binding constant, since a common feature in protein-polyelectrolyte systems is a maximum in affinity in the ionic strength range 10 mM 相似文献   

19.
In systems biology, regulatory pathway is one of the most important research areas. However, regulatory pathway is so complicated that we still poorly understand this system. On the other hand, with rapid accumulated information on different organisms, it becomes more and more possible to in-depth investigate regulatory pathway. To understand regulatory pathway well, figuring out the components of each pathway is the most important step. In this study, a network- based method was proposed to classify human genes into corresponding pathways. The information of protein-protein interactions retrieved from STRING was used to construct a network and jackknife test was employed to evaluate the method. As a result, the first order prediction accuracy was 87.91%, indicating that interactive proteins always have similar biological regulatory functions. By comparing the predicted results obtained from other methods based on blast and amino acid composition, respectively, it implies that our prediction method is quite promising that may provide an opportunity to understand this complicated pathway system well.  相似文献   

20.
Li N  Hou T  Ding B  Wang W 《Proteins》2011,79(11):3208-3220
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 2387 peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号