首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.  相似文献   

2.
In this article, the formation of prokaryotic and eukaryotic cardiolipin is reviewed in light of its biological function. I begin with a detailed account of the structure of cardiolipin, its stereochemistry, and the resulting physical properties, and I present structural analogs of cardiolipin that occur in some organisms. Then I continue to discuss i) the de novo formation of cardiolipin, ii) its acyl remodeling, iii) the assembly of cardiolipin into biological membranes, and iv) the degradation of cardiolipin, which may be involved in apoptosis and mitochondrial fusion. Thus, this article covers the entire metabolic cycle of this unique phospholipid. It is shown that mitochondria produce cardiolipin species with a high degree of structural uniformity and molecular symmetry, among which there is often a dominant form with four identical acyl chains. The subsequent assembly of cardiolipin into functional membranes is largely unknown, but the analysis of crystal structures of membrane proteins has revealed a first glimpse into the underlying principles of cardiolipin-protein interactions. Disturbances of cardiolipin metabolism are crucial in the pathophysiology of human Barth syndrome and perhaps also play a role in diabetes and ischemic heart disease.  相似文献   

3.
The role of lipids in VDAC oligomerization   总被引:1,自引:0,他引:1  
Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the membrane. This study addresses the role of lipids in this process. We investigate the effect of cardiolipin (CL) and phosphatidylglycerol (PG), anionic lipids important for mitochondria metabolism and apoptosis, on VDAC oligomerization. By applying fluorescence cross-correlation spectroscopy to VDAC reconstituted into giant unilamellar vesicles, we demonstrate that PG significantly enhances VDAC oligomerization in the membrane, whereas cardiolipin disrupts VDAC supramolecular assemblies. During apoptosis, the level of PG in mitochondria increases, whereas the CL level decreases. We suggest that the specific lipid composition of the outer mitochondrial membrane might be of crucial relevance and, thus, a potential cue for regulating the oligomeric state of VDAC.  相似文献   

4.
The Saccharomyces cerevisiae Taz1 protein is the orthologue of human Tafazzin, a protein that when inactive causes Barth Syndrome (BTHS), a severe inherited X-linked disease. Taz1 is a mitochondrial acyltransferase involved in the remodeling of cardiolipin. We show that Taz1 is an outer mitochondrial membrane protein exposed to the intermembrane space (IMS). Transport of Taz1 into mitochondria depends on the receptor Tom5 of the translocase of the outer membrane (TOM complex) and the small Tim proteins of the IMS, but is independent of the sorting and assembly complex (SAM). TAZ1 deletion in yeast leads to growth defects on nonfermentable carbon sources, indicative of a defect in respiration. Because cardiolipin has been proposed to stabilize supercomplexes of the respiratory chain complexes III and IV, we assess supercomplexes in taz1delta mitochondria and show that these are destabilized in taz1Delta mitochondria. This leads to a selective release of a complex IV monomer from the III2IV2 supercomplex. In addition, assembly analyses of newly imported subunits into complex IV show that incorporation of the complex IV monomer into supercomplexes is affected in taz1Delta mitochondria. We conclude that inactivation of Taz1 affects both assembly and stability of respiratory chain complexes in the inner membrane of mitochondria.  相似文献   

5.
The role of phospholipids in normal assembly and organization of the membrane proteins has been well documented. Cardiolipin, a unique tetra-acyl phospholipid localized in the inner mitochondrial membrane, is implicated in the stability of many inner-membrane protein complexes. Loss of cardiolipin content, alterations in its acyl chain composition and/or cardiolipin peroxidation have been associated with dysfunction in multiple tissues in a variety of pathological conditions. The aim of this study was to analyze the phospholipid composition of the mitochondrial membrane in the four most frequent mutations in the ATP6 gene: L156R, L217R, L156P and L217P but, more importantly, to investigate the possible changes in the cardiolipin profile. Mitochondrial membranes from fibroblasts with mutations at codon 217 of the ATP6 gene, showed a different cardiolipin content compared to controls. Conversely, results similar to controls were obtained for mutations at codon 156. These findings may be attributed to differences in the biosynthesis and remodeling of cardiolipin at the level of the inner mitochondrial transmembrane related to some mutations of the ATP6 gene.  相似文献   

6.
Strains of Escherichia coli amplifying the intrinsic membrane enzyme fumarate reductase accommodate the overproduced enzyme by increasing the amount of membrane material, in the form of intracellular tubular structures. These tubules have been observed in strains harbouring multicopy frd plasmids and in ampicillin hyper-resistant strains. A procedure has been developed for isolation of tubules nearly free of cytoplasmic membrane. Using protein A-gold labelling and optical diffraction of electron micrographs, a model for tubule structure is proposed. The tubules have a lower lipid/protein ratio than the cytoplasmic membrane, with the enzyme accounting for greater than 90% of the protein in the tubules. Both cytoplasmic membranes and tubules from amplified strains are enriched in cardiolipin and have a more fluid fatty acid composition than wild-type strains. Mutants defective in cardiolipin synthesis produce tubules in response to excess fumarate reductase, but these tubules have an altered appearance, indicating that lipid-protein interactions may be important for tubule assembly.  相似文献   

7.
Respiratory Complex II of the mitochondrial inner membrane serves as a link between the tricarboxylic acid cycle and the electron transport chain. Complex II dysfunction has been implicated in a wide range of heritable mitochondrial diseases, including cancer, by a mechanism that likely involves the production of reactive oxygen species (ROS). Using Complex II enzymes reconstituted into nanoscale lipid bilayers (nanodiscs) with varying lipid composition, we demonstrate for the first time that the phospholipid environment, specifically the presence of cardiolipin, is critical for the assembly and enzymatic activity of the complex, as well as in the curtailment of ROS production.  相似文献   

8.
In mammalian mitochondria, cardiolipin molecules are the primary targets of oxidation by reactive oxygen species. The interaction of oxidized cardiolipin molecules with the constituents of the apoptotic cascade may lead to cell death. In the present study, we compared the effects of quinol-containing synthetic and natural amphiphilic antioxidants on cardiolipin peroxidation in a model system (liposomes of bovine cardiolipin). We found that both natural ubiquinol and synthetic antioxidants, even being introduced in micro- and submicromolar concentrations, fully protected the liposomal cardiolipin from peroxidation. The duration of their action, however, varied; it increased with the presence of either methoxy groups of ubiquinol or additional reduced redox groups (in the cases of rhodamine and berberine derivates). The concentration of ubiquinol in the mitochondrial membrane substantially exceeds the concentrations of antioxidants we used and would seem to fully prevent peroxidation of membrane cardiolipin. In fact, this does not happen: cardiolipin in mitochondria is oxidized, and this process can be blocked by amphiphilic cationic antioxidants (Y. N. Antonenko et al. (2008) Biochemistry (Moscow), 73, 1273–1287). We suppose that a fraction of mitochondrial cardiolipin could not be protected by natural ubiquinol; in vivo, peroxidation most likely threatens those cardiolipin molecules that, being bound within complexes of membrane proteins, are inaccessible to the bulky hydrophobic ubiquinol molecules diffusing in the lipid bilayer of the inner mitochondrial membrane. The ability to protect these occluded cardiolipin molecules from peroxidation may explain the beneficial therapeutic action of cationic antioxidants, which accumulate electrophoretically within mitochondria under the action of membrane potential.  相似文献   

9.
Mitochondria are known to actively regulate cell death with the final phenotype of demise being determined by the metabolic and energetic status of the cell. Mitochondrial membrane permeabilization (MMP) is a critical event in cell death, as it regulates the degree of mitochondrial dysfunction and the release of intermembrane proteins that function in the activation and assembly of caspases. In addition to the crucial role of proapoptotic members of the Bcl-2 family, the lipid composition of the mitochondrial membranes is increasingly recognized to modulate MMP and hence cell death. The unphysiological accumulation of cholesterol in mitochondrial membranes regulates their physical properties, facilitating or impairing MMP during Bax and death ligand-induced cell death depending on the level of mitochondrial GSH (mGSH), which in turn regulates the oxidation status of cardiolipin. Cholesterol-mediated mGSH depletion stimulates TNF-induced reactive oxygen species and subsequent cardiolipin peroxidation, which destabilizes the lipid bilayer and potentiates Bax-induced membrane permeabilization. These data suggest that the balance of mitochondrial cholesterol to peroxidized cardiolipin regulates mitochondrial membrane properties and permeabilization, emerging as a rheostat in cell death.  相似文献   

10.
《BBA》2022,1863(7):148587
Cardiolipin is the signature phospholipid of the mitochondrial inner membrane. It participates in shaping the inner membrane as well as in modulating the activity of many membrane-bound proteins. The acyl chain composition of cardiolipin is finely tuned post-biosynthesis depending on the surrounding phospholipids to produce mature or unsaturated cardiolipin. However, experimental evidence showing that immature and mature cardiolipin are functionally equivalents for mitochondria poses doubts on the relevance of cardiolipin remodeling. In this work, we studied the role of cardiolipin acyl chain composition in mitochondrial bioenergetics, including a detailed bioenergetic profile of yeast mitochondria. Cardiolipin acyl chains were modified by genetic and nutritional manipulation. We found that both the bioenergetic efficiency and osmotic stability of mitochondria are dependent on the unsaturation level of cardiolipin acyl chains. It is proposed that cardiolipin remodeling and, consequently, mature cardiolipins play an important role in mitochondrial inner membrane integrity and functionality.  相似文献   

11.
The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes.  相似文献   

12.
Cardiolipin stabilizes respiratory chain supercomplexes   总被引:19,自引:0,他引:19  
Cardiolipin stabilized supercomplexes of Saccharomyces cerevisiae respiratory chain complexes III and IV (ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, respectively), but was not essential for their formation in the inner mitochondrial membrane because they were found also in a cardiolipin-deficient strain. Reconstitution with cardiolipin largely restored wild-type stability. The putative interface of complexes III and IV comprises transmembrane helices of cytochromes b and c1 and tightly bound cardiolipin. Subunits Rip1p, Qcr6p, Qcr9p, Qcr10p, Cox8p, Cox12p, and Cox13p and cytochrome c were not essential for the assembly of supercomplexes; and in the absence of Qcr6p, the formation of supercomplexes was even promoted. An additional marked effect of cardiolipin concerns cytochrome c oxidase. We show that a cardiolipin-deficient strain harbored almost inactive resting cytochrome c oxidase in the membrane. Transition to the fully active pulsed state occurred on a minute time scale.  相似文献   

13.
Cardiolipin, a unique phospholipid composed of four fatty acid chains, is located mainly in the mitochondrial inner membrane (IM). Cardiolipin is required for the integrity of several protein complexes in the IM, including the TIM23 translocase, a dynamic complex which mediates protein import into the mitochondria through interactions with the import motor presequence translocase–associated motor (PAM). In this study, we report that two homologous intermembrane space proteins, Ups1p and Ups2p, control cardiolipin metabolism and affect the assembly state of TIM23 and its association with PAM in an opposing manner. In ups1Δ mitochondria, cardiolipin levels were decreased, and the TIM23 translocase showed altered conformation and decreased association with PAM, leading to defects in mitochondrial protein import. Strikingly, loss of Ups2p restored normal cardiolipin levels and rescued TIM23 defects in ups1Δ mitochondria. Furthermore, we observed synthetic growth defects in ups mutants in combination with loss of Pam17p, which controls the integrity of PAM. Our findings provide a novel molecular mechanism for the regulation of cardiolipin metabolism.  相似文献   

14.
Cardiolipin, an anionic phospholipid found primarily in the inner mitochondrial membrane, has many well-defined roles within the peripheral tissues, including the maintenance of mitochondrial membrane fluidity and the regulation of mitochondrial functions. Within the central nervous system (CNS), cardiolipin is found within both neuronal and non-neuronal glial cells, where it regulates metabolic processes, supports mitochondrial functions, and promotes brain cell viability. Furthermore, cardiolipin has been shown to act as an elimination signal and participate in programmed cell death by apoptosis of both neurons and glia. Since cardiolipin is associated with regulating brain homeostasis, the modification of its structure, or even a decrease in the overall levels of cardiolipin, can result in mitochondrial dysfunction, which is a characteristic feature of many diseases. In this review, we outline the various functions of cardiolipin within the cells of the CNS, including neurons, astrocytes, microglia, and oligodendrocytes. In addition, we discuss the role cardiolipin may play in the pathogenesis of the neurodegenerative disorders Alzheimer’s disease and Parkinson’s disease, as well as traumatic brain injury.  相似文献   

15.
F1F0 ATP synthase forms dimers that tend to assemble into large supramolecular structures. We show that the presence of cardiolipin is critical for the degree of oligomerization and the degree of order in these ATP synthase assemblies. This conclusion was drawn from the statistical analysis of cryoelectron tomograms of cristae vesicles isolated from Drosophila flight-muscle mitochondria, which are very rich in ATP synthase. Our study included a wild-type control, a cardiolipin synthase mutant with nearly complete loss of cardiolipin, and a tafazzin mutant with reduced cardiolipin levels. In the wild-type, the high-curvature edge of crista vesicles was densely populated with ATP synthase molecules that were typically organized in one or two rows of dimers. In both mutants, the density of ATP synthase was reduced at the high-curvature zone despite unchanged expression levels. Compared to the wild-type, dimer rows were less extended in the mutants and there was more scatter in the orientation of dimers. These data suggest that cardiolipin promotes the ribbonlike assembly of ATP synthase dimers and thus affects lateral organization and morphology of the crista membrane.  相似文献   

16.
Mutations in the human TAZ gene are associated with Barth Syndrome, an often fatal X-linked disorder that presents with cardiomyopathy and neutropenia. The TAZ gene encodes Tafazzin, a putative phospholipid acyltranferase that is involved in the remodeling of cardiolipin, a phospholipid unique to the inner mitochondrial membrane. It has been shown that the disruption of the Tafazzin gene in yeast (Taz1) affects the assembly and stability of respiratory chain Complex IV and its supercomplex forms. However, the implications of these results for Barth Syndrome are restricted due to the additional presence of Complex I in humans that forms a supercomplex with Complexes III and IV. Here, we investigated the effects of Tafazzin, and hence cardiolipin deficiency in lymphoblasts from patients with Barth Syndrome, using blue-native polyacrylamide gel electrophoresis. Digitonin extraction revealed a more labile Complex I/III(2)/IV supercomplex in mitochondria from Barth Syndrome cells, with Complex IV dissociating more readily from the supercomplex. The interaction between Complexes I and III was also less stable, with decreased levels of the Complex I/III(2) supercomplex. Reduction of Complex I holoenzyme levels was observed also in the Barth Syndrome patients, with a corresponding decrease in steady-state subunit levels. We propose that the loss of mature cardiolipin species in Barth Syndrome results in unstable respiratory chain supercomplexes, thereby affecting Complex I biogenesis, respiratory activities and subsequent pathology.  相似文献   

17.
HIV-1 neutralizing monoclonal antibody (Mab) 2F5 recognizes a membrane-partitioning gp41 sequence. Just recently its capacity to react with cardiolipin has been demonstrated. Here, we have studied the specificity of Mab2F5-phospholipid interactions comparing partitioning into lipid bilayers with recognition of molecular species dispersed in solution. Using a liposome-based ELISA we demonstrate a preferential association with cardiolipin bilayers. When different soluble lysoderivatives were compared in their capacity to inhibit Mab2F5 binding to immobilized HIV-1 peptide epitope, only dilysocardiolipin resulted effective in blocking the process. Dilyso-cardiolipin also competed with native-functional gp41 for 2F5 recognition. Thus, our data support specific cardiolipin recognition by 2F5 that is not dependent on lipid bilayer assembly and involves the epitope-binding site. These findings might be of relevance for understanding the molecular basis of HIV-1 immune evasion.  相似文献   

18.
Although many proteins are known to localize in bacterial cells, for the most part our understanding of how such localization takes place is limited. Recent evidence that the phospholipid cardiolipin localizes to the poles of rod-shaped bacteria suggests that targeting of some proteins may rely on the heterogeneous distribution of membrane lipids. Membrane curvature has been proposed as a factor in the polar localization of high-intrinsic-curvature lipids, but the small size of lipids compared to the dimensions of the cell means that single molecules cannot stably localize. At the other extreme, phase separation of the membrane energetically favors a single domain of such lipids at one pole. We have proposed a physical mechanism in which osmotic pinning of the membrane to the cell wall naturally produces microphase separation, i.e., lipid domains of finite size, whose aggregate sensitivity to cell curvature can support spontaneous and stable localization to both poles. Here, we demonstrate that variations in the strength of pinning of the membrane to the cell wall can also act as a strong localization mechanism, in agreement with observations of cardiolipin relocalization from the poles to the septum during sporulation in the bacterium Bacillus subtilis. In addition, we rigorously determine the relationship between localization and the domain-size distribution including the effects of entropy, and quantify the strength of domain-domain interactions. Our model predicts a critical concentration of cardiolipin below which domains will not form and hence polar localization will not take place. This observation is consistent with recent experiments showing that in Escherichia coli cells with reduced cardiolipin concentrations, cardiolipin and the osmoregulatory protein ProP fail to localize to the poles.  相似文献   

19.
Based on morphological evidence, mitochondrial inner membrane growth has been reported to be discontinuous in heat shock-synchronized Tetrahymena pyriformis. As a biochemical measure of membrane growth under these conditions, we have examined phospholipid accumulation in the cell. No marked modulation of the accumulation of any of the major phospholipids could be detected through the cell cycle. At least 89% of the cardiolipin in the cells is restricted to the mitochondria, and we have used it as a marker for the growth of the mitochondrial inner membrane. During the heat shock synchrony, cardiolipin accumulates uniformly in parallel with the exponential rate of increase of total cellular phospholipids. These results suggest that at least the phospholipid component of all membrane systems in the cell grow continuously and uniformly. Additionally, we have shown that the total phospholipid content of Tetrahymena increases by a factor of 2.4 per generation following a series of heat shocks. No such net overaccumulation is observed for protein content.  相似文献   

20.
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号