首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一组人工合成抗菌肽的研究   总被引:9,自引:0,他引:9  
Cecropin A1是一种从惜古比天蚕(Hyalophora cecropia)中提取的由37个氨基酸组成的一种α-螺旋抗菌肽,其杀菌活性较弱。本文采用了cecropin A1的N端1-8序列KWKLFKKI,另加一段标准的α-螺旋结构序列,然后用一个铰链结构GIG相连,合成了15条抗菌肽。经过试验证明部分含有核心标准螺旋结构的序列,对革兰氏阳性菌和阴性菌的最小抑菌浓度仅是原有cecropin A1抗菌肽的1/100左右。该类抗菌肽有希望进一步开发为新的抗感染药物。该类抗菌肽已经申请专利,专利号为PCT/CN 03/00522。  相似文献   

2.

Background

Due to increasing antibiotics resistance, antimicrobial peptides (AMPs) are receiving increased attention. Pseudomonas aeruginosa is a major pathogen in this context, involved, e.g., in keratitis and wound infections. Novel bactericidal agents against this pathogen are therefore needed.

Methods

Bactericidal potency was monitored by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was probed by hemolysis. Mechanistic information was obtained from assays on peptide-induced vesicle disruption and lipopolysaccharide binding.

Results

End-tagging by hydrophobic amino acids yields increased potency of AMPs against P. aeruginosa, irrespective of bacterial proteinase production. Exemplifying this by two peptides from kininogen, GKHKNKGKKNGKHNGWK and KNKGKKNGKH, potency increased with tag length, correlating to more efficient bacterial wall and vesicle rupture, and to more pronounced P. aeruginosa lipopolysaccharide binding. End-tag effects remained at high electrolyte concentration and in the presence of plasma or anionic macromolecular scavengers. The tagged peptides displayed stability against P. aeruginosa elastase, and were potent ex vivo, both in a contact lens model and in a skin wound model.

General significance

End-tagging, without need for post-peptide synthesis modification, may be employed to enhance AMP potency against P. aeruginosa at maintained limited toxicity.  相似文献   

3.
In silico structural analyses of sets of α-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.  相似文献   

4.
New compounds incorporating with the oxindole nucleus were synthesized via the reaction of substituted isatins [5-methyl-, 5-chloro- and 1-hydroxymethyl isatins] with different nucleophiles. The structures of the newly compounds were elucidated on the basis of FTIR, 1H NMR, 13CMR spectral data, GC/MS and chemical analysis. Investigation of antimicrobial activity of the new compounds was evaluated using broth dilution technique in terms of minimal inhibitory concentration (MIC) count against four pathogenic bacteria and two pathogenic fungi. Most of the new compounds are significantly active against bacteria and fungi. MIC showed that compound (4a) possesses higher effect on Gram-positive bacteria Bacillus cereus than the selected antibacterial agent sulphamethoxazole, whereas compound (11c) possesses more activity against Gram-negative bacteria Shigella dysenterie.  相似文献   

5.
Antimicrobial peptides (AMPs) are a naturally occurring component of the innate immune response of many organisms and can have activity against both Gram-negative and Gram-positive bacterial species. In order to optimize and improve the direct antimicrobial effect of AMPs against a broad spectrum of bacterial species, novel synthetic hybrids were rationally designed from cecropin A, LL-37 and magainin II. AMPs were selected based on their α-helical secondary structure and fragments of these were analyzed and combined in silico to determine which hybrid peptides would form the best amphipathic cationic α-helices. Four hybrid peptides were synthesized (CaLL, CaMA, LLaMA and MALL) and evaluated for direct antimicrobial activity against a range of bacterial species (Bacillus anthracis, Burkholderia cepacia, Francisella tularensis LVS and Yersinia pseudotuberculosis) alongside the original 'parent' AMPs. The hybrid peptides showed greater antimicrobial effects than the parent AMPs (in one case a parent is completely ineffective while a hybrid based on it removes all traces of bacteria by 3h), although they also demonstrated higher hemolytic properties. Modifications were then carried out to the most toxic hybrid AMP (CaLL) to further improve the therapeutic index. Modifications made to the hybrid lowered hemolytic activity and also lowered antimicrobial activity by various degrees. Overall, this work highlights the potential for rational design and synthesis of improved AMPs that have the capability to be used therapeutically for treatment of bacterial infections.  相似文献   

6.
Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long sought hormone that regulates iron homeostasis in mammals. The native peptide of 25 amino acids (Hepc25) contains four disulfide bridges that maintain a β-hairpin motif. The aim of the present study was to assess whether the intramolecular disulfide bridges are necessary for Hepc25 antimicrobial activity. We show that a synthetic peptide corresponding to human Hepc25, and which contains the four disulfide bridges, has an antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. On the contrary, a synthetic peptide where all cysteines were replaced by alanines (Hepc25-Ala) had no detectable activity against the same strains of bacteria. In a further step, the mode of action of Hepc25 on Escherichia coli was studied. SYTOX Green uptake was used to assess bacterial membrane integrity. No permeabilization of the membrane was observed with Hepc25, indicating that this peptide does not kill bacteria by destroying their membranes. Gel retardation assay showed that the Hepc25 binds to DNA with high efficiency, and that this binding ability is dependent on the presence of the intramolecular disulfide bridges. Reduction of Hepc25 or replacement of the eight cysteines by alanine residues led to peptides that were no longer able to bind DNA in the in vitro assay. Altogether, these results demonstrate that Hepc25 should adopt a three-dimensional structure stabilized by the intramolecular disulfide bridges in order to have antibacterial activity.  相似文献   

7.
AIMS: The objective of this study was to evaluate the effectiveness of antibiotics and antimicrobial peptides against 10 strains of Xylella fastidiosa. METHODS AND RESULTS: The minimal inhibitory concentration (MIC) of 12 antibiotics and 18 antimicrobial peptides were determined by agar dilution tests and growth inhibition assays. Antibiotics with the lowest MIC for X. fastidiosa strains were gentamicin, tetracycline, ampicillin, kanamycin, and novobiocin, chloramphenicol, and rifampin. Plate growth inhibition assays showed that four of the antimicrobial peptides (Magainin 2, Indolicidin, PGQ, and Dermaseptin) were toxic to all X. fastidiosa strains. CONCLUSION: All X. fastidiosa strains were sensitive to several groups of antibiotics, and minor differences in sensitivity to several antimicrobial peptides were observed among strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that antibiotics and antimicrobial peptides have some activity against the pathogen, X. fastidiosa and may have application in protecting plants from developing Pierce's disease.  相似文献   

8.
The potential usefulness of antimicrobial peptides (AMPs) as antimycobacterial compounds has not been extensively explored. Although a myriad of studies on AMPs from different sources have been done, some of its mechanisms of action are still unknown. Maganins are of particular interest since they do not lyse non-dividing mammalian cells. In this work, AMPs with well-recognized activity against bacteria were synthesized, characterized, purified and their antimycobacterial activity and influence on ATPase activity in mycobacterial plasma membrane vesicles were assessed. Using bioinformatics tools, a magainin-I analog peptide (MIAP) with improved antimicrobial activity was designed. The influence of MIAP on proton (H(+)) pumping mediated by F(1)F(0)-ATPase in plasma membrane vesicles obtained from Mycobacterium tuberculosis was evaluated. We observed that the antimycobacterial activity of AMPs was low and variable. However, the activity of the designed peptide MIAP against M. tuberculosis was 2-fold higher in comparison to magainin-I. The basal ATPase activity of mycobacterial plasma membrane vesicles decreased approximately 24-30% in the presence of AMPs. On the other hand, the MIAP peptide completely abolished the F(1)F(0)-ATPase activity involved in H(+) pumping across M. tuberculosis plasma membranes vesicles at levels similar to the specific inhibitor N,N' dicyclohexylcarbodiimide. These finding suggest that AMPs can inhibit the H(+) pumping F(1)F(0)-ATPase of mycobacterial plasma membrane that potentially interferes the internal pH and viability of mycobacteria.  相似文献   

9.
Aims:  To determine serovar distribution and levels of antimicrobial susceptibility of Salmonella isolated from clinically ill pigs in diagnostic submissions.
Methods and Results:  A total of 197 Salmonella isolates were obtained by the Indiana Animal Disease Diagnostic Laboratory from 2003 to 2005. Minimal inhibitory concentrations (MICs) were determined using the standard microbroth dilution method. The top four serovars identified were Salm. enterica serovar Typhimurium variant Copenhagen, Salm . Derby, Salm . Choleraesuis var. Kunzendorf and Salm . Typhimurium. All isolates were susceptible to the fluoroquinolones tested except that eight isolates were intermediate to difloxacin. The isolates showed a low prevalence of resistance to trimethoprim/sulphadiazine (Sxt), gentamicin (G), ceftiofur (Cf) and cephalothin (Cp) with low MIC50 value of ≤0·5, 0·5, 1 and 4  μ g ml−1, respectively. They showed a high prevalence of resistance to tetracycline (T; 83·8%), and a moderate prevalence to ampicillin (55·8%), spectinomycin (42·6%), ticarcillin (41·6%) and florfenicol (41·1%). There were more isolates of Salm . Typhimurium, including var. Copenhagen and Salm . Agona, that possessed multiple antimicrobial resistance to amoxicillin/clavulanic acid, ampicillin, ceftiofur and cephalothin (AxApCfCp) than the other serovars.
Conclusions:  The swine Salmonella isolates were susceptible to the fluoroquinolones, Sxt, G, Cf and Cp, but resistant to T.
Significance and Impact of the Study:  These findings provided useful information regarding antimicrobial susceptibility and resistance in dealing with clinical salmonellosis in pig herds.  相似文献   

10.
Highly antimicrobial active arginine- and tryptophan-rich peptides were synthesized ranging in size from 11 to five amino acid residues in order to elucidate the main structural requirement for such short antimicrobial peptides. The amino acid sequences of the peptides were based on previous studies of longer bovine and murine lactoferricin derivatives. Most of the peptides showed strong inhibitory action against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacterium Staphylococcus aureus. For the most active derivatives, the minimal inhibitory concentration values observed for the Gram-negative bacteria were 5 microg/ml (3.5 microM), whereas it was 2.5 microg/ml (1.5 microM) for the Gram-positive bacterium. It was essential for the antimicrobial activity that the peptides contained a minimum of three tryptophan and three arginine residues, and carried a free N-terminal amino group and an amidated C-terminal end. Furthermore, a minimum sequence size of seven amino acid residues was required for a high antimicrobial activity against Pseudomonas aeruginosa. The insertion of additional arginine and tryptophan residues into the peptides resulted only in small variations in the antimicrobial activity, whereas replacement of a tryptophan residue with tyrosine in the hepta- and hexapeptides resulted in reduced antimicrobial activity, especially against the Gram-negative bacteria. The peptides were non-haemolytic, making them highly potent as prospective antibiotic agents.  相似文献   

11.
As proteolytically stable peptidomimetics, peptoids could serve as antifungal agents to supplement a therapeutic field wrought with toxicity issues. We report the improvement of an antifungal peptoid, AEC5, through an iterative structure-activity relationship study. A sarcosine scan was used to first identify the most pharmacophorically important peptoid building blocks of AEC5, followed by sequential optimization of each building block. The optimized antifungal peptoid from this study, β-5, has improved potency towards Cryptococcus neoformans and decreased toxicity towards mammalian cells. For example, the selectivity ratio for C. neoformans over mammalian fibroblasts was improved from 8 for AEC5 to 37 for β-5.  相似文献   

12.
家蝇抗菌肽的研究与应用   总被引:7,自引:0,他引:7  
近年来,对家蝇Muscadomestica体内外抗菌活性物质的研究受到人们广泛的关注,其中研究较多的是抗菌肽。家蝇抗菌肽对细菌、真菌、肿瘤癌细胞和病毒等具有生物活性,可通过针刺、带菌针刺、超声波、放射性射线、高频电磁场和生理盐水等方法诱导增量产生,能耐极端的温度和pH值的溶液,在高浓度盐溶液中也很稳定。文章还对家蝇抗菌肽的结构特点、作用机理与分子生物学研究做了概述,同时对家蝇抗菌肽的应用前景进行了讨论。  相似文献   

13.
Nan YH  Bang JK  Jacob B  Park IS  Shin SY 《Peptides》2012,35(2):239-247
To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity, but much lower LPS-neutralizing activity compared to parental LL-37. The analogs, a5, a6, a7 and a8 with higher hydrophobicity displayed LPS-neutralizing activity comparable to that of LL-37, but much lesser prokaryotic selectivity. These results indicate that the proper hydrophobicity of the peptides is crucial to exert the amalgamated property of LPS-neutralizing activity and prokaryotic selectivity. Furthermore, to increase LPS-neutralizing activity of the analog a4 without a remarkable decrease in prokaryotic selectivity, we synthesized Trp-substituted analogs (a4-W1 and a4-W2), in which Phe(5) or Phe(15) of a4 is replaced by Trp. Despite their same prokaryotic selectivity, a4-W2 displayed much higher LPS-neutralizing activity compared to a4-W1. When compared with parental LL-37, a4-W2 showed retained LPS-neutralizing activity and 2.8-fold enhanced prokaryotic selectivity. These results suggest that the effective site for Trp-substitution when designing novel AMPs with higher LPS-neutralizing activity, without a remarkable reduction in prokaryotic selectivity, is the amphipathic interface between the end of the hydrophilic side and the start of the hydrophobic side rather than the central position of the hydrophobic side in their α-helical wheel projection. Taken together, the analog a4-W2 can serve as a promising template for the development of therapeutic agents for the treatment of endotoxic shock and bacterial infection.  相似文献   

14.
Reproductive tract infections pose a serious threat to health and fertility. Due to the emergence of antibiotic resistant pathogens, antimicrobial proteins and peptides of the reproductive tract are extensively characterized in recent years toward developing newer strategies to treat genital tract infections. Pathogen growth inhibition using a combination of naturally occurring male reproductive tract antimicrobial peptides and commonly used antibiotics has not been reported. Checker board analyses were carried out to determine the nature of interaction (synergistic, additive and antagonistic) between HE2α and HE2β2 peptides and the commonly used antibiotics. Using Escherichia coli as the target organism, the minimal inhibitory concentration and fractional inhibitory concentration indices were determined. We demonstrate for the first time that the human male reproductive tract antimicrobial peptides HE2α and HE2β2 act synergistically with the commonly used antibiotics to inhibit E. coli growth. A combination of HE2α and HE2β2 peptides resulted in an additive effect. Interestingly, the synergistic effects of HE2 peptides were highest with doxycycline and ciprofloxacin, antibiotics generally used to treat epididymitis. Results of this study demonstrate the potential of endogenous HE2 peptides to be pharmacologically important in designing novel strategies to treat reproductive tract infections. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
We investigated the mode of action underlying the anti-mycoplasma activity of cationic antimicrobial peptides (AMPs) using four known AMPs and Mycoplasma pulmonis as a model mycoplasma. Scanning electron microscopy revealed that the integrity of the M. pulmonis membrane was significantly damaged within 30 min of AMPs exposure, which was confirmed by measuring the uptake of propidium iodine into the mycoplasma cells. The anti-mycoplasma activity of AMPs was found to depend on the binding affinity for phosphatidylcholine, which was incorporated into the mycoplasma membrane from the growth medium and preferentially distributed in the outer leaflet of the lipid bilayer.  相似文献   

16.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

17.
药用植物内生菌的分离及抗菌活性的初步研究   总被引:6,自引:0,他引:6  
为研究药用植物金荞麦、款冬及黄皮树中内生菌的抗菌活性,筛选具有广谱抗菌效果的内生菌。以导致人畜及植物致病的15种病原微生物为拮抗菌株,采用改进K-B纸片法、生长速率法及琼脂二倍稀释法进行抑菌试验。结果从三种药用植物中共分离到内生菌38株,其中FE-R9、TE-R7、PE-S11三株内生真菌发酵液提取物对10种人畜指示菌的最低抑菌浓度(M IC)分别在7.50~15.00 g.L-1、3.13~12.50 g.L-1、0.39~15.00 g.L-1之间。FE-R9、TE-R7、PE-S11对多种病原微生物具有显著抑制生长的作用,这可为寻找天然抗菌物质提供资源。  相似文献   

18.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   

19.
Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.  相似文献   

20.
Recently, we have isolated and characterized remarkable antimicrobial peptides (AMPs) from the venom reservoirs of wild bees. These peptides (melectin, lasioglossins, halictines and macropin) and their analogs display high antimicrobial activity against Gram-positive and -negative bacteria, antifungal activity and low or moderate hemolytic activity. Here we describe cytotoxicity of the above-mentioned AMPs and some of their analogs toward two normal cell lines (human umbilical vein endothelial cells, HUVEC, and rat intestinal epithelial cells, IEC) and three cancer cell lines (HeLa S3, CRC SW 480 and CCRF-CEM T). HeLa S3 cells were the most sensitive ones (concentration causing 50% cell death in the case of the most toxic analogs was 2.5-10 μM) followed by CEM cells. For the other cell lines to be killed, the concentrations had to be four to twenty times higher. These results bring promising outlooks of finding medically applicable drugs on the basis of AMPs. Experiments using fluorescently labeled lasioglossin III (Fl-VNWKKILGKIIKVVK-NH(2)) as a tracer confirmed that the peptides entered the mammalian cells in higher quantities only after they reached the toxic concentration. After entering the cells, their concentration was the highest in the vicinity of the nucleus, in the nucleolus and in granules which were situated at very similar places as mitochondria. Experiments performed using cells with tetramethylrhodamine labeled mitochondria showed that mitochondria were fragmented and lost their membrane potential in parallel with the entrance of the peptides into the cell and the disturbance of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号