首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrostatic potentials created by fixed or induced charges regulate many cellular phenomena including the rate of ion transport through proteinaceous ion channels. Nanometer-scale pores of these channels also play a critical role in the transport of charged and neutral macromolecules. We demonstrate here that, surprisingly, changing the charge state of a channel markedly alters the ability of nonelectrolyte polymers to enter the channel's pore. Specifically, we show that the partitioning of differently-sized linear nonelectrolyte polymers of ethylene glycol into the Staphylococcus aureus α-hemolysin channel is altered by the solution pH. Protonating some of the channel side chains decreases the characteristic polymer size (molecular weight) that can enter the pore by ∼25% but increases the ionic current by ∼15%. Thus, the “steric” and “electric” size of the channel change in opposite directions. The results suggest that effects due to polymer and channel hydration are crucial for polymer transport through such pores. Received: 16 March 1997 / Accepted: 24 April 1997  相似文献   

2.
Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel1 that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of ≠-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.  相似文献   

3.
Abstract

Although pore formation by protective antigen (PA) is critical to cell intoxication by anthrax toxin (AT), the structure of the pore form of PA (the PA63 pore) has not been determined. Hence, in this study, the PA63 pore was modeled using the X-ray structures of monomeric PA and heptameric α-hemolysin (α-HL) as templates. The PA63 pore model consists of two weakly associated domains, namely the cap and stem domains. The ring-like cap domain has a length of 80 Å and an outside diameter of 120 Å, while the cylinder-like stem domain has a length of 100 Å and outside diameter of ~28 Å. This provides the PA63 pore model with a length of 180 Å. Based on experimental results, the channel in the PA63 pore model was built to have a minimum diameter of ~12 Å, depending on side chain conformations. Because of its large size and structural complexity, the all-atom model of the PA63 pore is the end-stage construction of four separate modeling projects described herein. The final model is consistent with published experimental results, including mutational analysis and channel conductance experiments. In addition, the model was energetically and hydropathically refined to optimize molecular packing within the protomers and at the protomer-protomer interfaces. By providing atomic detail to biochemical and biophysical data, the PA63 pore model may afford new insights into the binding mode of PA on the membrane surface, the prepore-pore transition, and the mechanism of cell entry by anthrax toxin.  相似文献   

4.
DNA molecules tethered inside a protein pore can be used as a tool to probe distance and electrical potential. The approach and its limitations were tested with alpha-hemolysin, a pore of known structure. A single oligonucleotide was attached to an engineered cysteine to allow the binding of complementary DNA strands inside the wide internal cavity of the extramembranous domain of the pore. The reversible binding of individual oligonucleotides produced transient current blockades in single channel current recordings. To probe the internal structure of the pore, oligonucleotides with 5' overhangs of deoxyadenosines and deoxythymidines up to nine bases in length were used. The characteristics of the blockades produced by the oligonucleotides indicated that single-stranded overhangs of increasing length first approach and then thread into the transmembrane beta-barrel. The distance from the point at which the DNA was attached and the internal entrance to the barrel is 43 A, consistent with the lengths of the DNA probes and the signals produced by them. In addition, the tethered DNAs were used to probe the electrical potential within the protein pore. Binding events of oligonucleotides with an overhang of five bases or more, which threaded into the beta-barrel, exhibited shorter residence times at higher applied potentials. This finding is consistent with the idea that the main potential drop is across the alpha-hemolysin transmembrane beta-barrel, rather than the entire length of the lumen of the pore. It therefore explains why the kinetics and thermodynamics of formation of short duplexes within the extramembranous cavity of the pore are similar to those measured in solution, and bolsters the idea that a "DNA nanopore" provides a useful means for examining duplex formation at the single molecule level.  相似文献   

5.
A mechanism of how polyanions influence the channel formed by Staphylococcus aureus α-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC50, nearly 104-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the ζ-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca2+-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of α-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.  相似文献   

6.
We demonstrate a method for simultaneous structure and function determination of integral membrane proteins. Electrical impedance spectroscopy shows that Staphylococcus aureus α-hemolysin channels in membranes tethered to gold have the same properties as those formed in free-standing bilayer lipid membranes. Neutron reflectometry provides high-resolution structural information on the interaction between the channel and the disordered membrane, validating predictions based on the channel's x-ray crystal structure. The robust nature of the membrane enabled the precise localization of the protein within 1.1 Å. The channel's extramembranous cap domain affects the lipid headgroup region and the alkyl chains in the outer membrane leaflet and significantly dehydrates the headgroups. The results suggest that this technique could be used to elucidate molecular details of the association of other proteins with membranes and may provide structural information on domain organization and stimuli-responsive reorganization for transmembrane proteins in membrane mimics.  相似文献   

7.
Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.  相似文献   

8.
The aim of this work is to study pore protein denaturation inside a lipid bilayer and to probe current asymmetry as a function of the channel conformation. We describe the urea denaturation of alpha-hemolysin channel and the channel formation of alpha-hemolysin monomer incubated with urea prior to insertion into a lipid bilayer. Analysis of single-channel recordings of current traces reveals a sigmoid curve of current intensity as a function of urea concentration. The normalized current asymmetry at 29+/-4% is observed between 0 and 3.56M concentrations and vanishes abruptly down to 0 concentration exceeds 4M. The loss of current asymmetry through alpha-hemolysin is due to the denaturation of the channel's cap. We also show that the alpha-hemolysin pore inserted into a lipid bilayer is much more resistant to urea denaturation than the alpha-hemolysin monomer in solution: The pore remains in the lipid bilayer up to 7.2M urea. The pore formation is possible up to 4.66M urea when protein monomers were previously incubated in urea.  相似文献   

9.
Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel1 that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of π-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.Key words: calcium channels, homology modeling, π-bulges, restrained minimization  相似文献   

10.
Although pore formation by protective antigen (PA) is critical to cell intoxication by anthrax toxin (AT), the structure of the pore form of PA (the PA63 pore) has not been determined. Hence, in this study, the PA63 pore was modeled using the X-ray structures of monomeric PA and heptameric alpha-hemolysin (alpha-HL) as templates. The PA63 pore model consists of two weakly associated domains, namely the cap and stem domains. The ring-like cap domain has a length of 80 A and an outside diameter of 120 A, while the cylinder-like stem domain has a length of 100 A and outside diameter of approximately 28 A. This provides the PA63 pore model with a length of 180 A. Based on experimental results, the channel in the PA63 pore model was built to have a minimum diameter of ~12 A, depending on side chain conformations. Because of its large size and structural complexity, the all-atom model of the PA63 pore is the end-stage construction of four separate modeling projects described herein. The final model is consistent with published experimental results, including mutational analysis and channel conductance experiments. In addition, the model was energetically and hydropathically refined to optimize molecular packing within the protomers and at the protomer-protomer interfaces. By providing atomic detail to biochemical and biophysical data, the PA63 pore model may afford new insights into the binding mode of PA on the membrane surface, the prepore-pore transition, and the mechanism of cell entry by anthrax toxin.  相似文献   

11.
The insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis undergo several conformational changes from crystal inclusion protoxins to membrane-inserted channels in the midgut epithelial cells of the target insect. Here we analyzed the stability of the different forms of Cry1Ab toxin, monomeric toxin, pre-pore complex, and membrane-inserted channel, after urea and thermal denaturation by monitoring intrinsic tryptophan fluorescence of the protein and 1-anilinonaphthalene-8-sulfonic acid binding to partially unfolded proteins. Our results showed that flexibility of the monomeric toxin was dramatically enhanced upon oligomerization and was even further increased by insertion of the pre-pore into the membrane as shown by the lower concentration of chaotropic agents needed to achieve unfolding of the oligomeric species. The flexibility of the toxin structures is further increased by alkaline pH. We found that the monomer-monomer interaction in the pre-pore is highly stable because urea promotes oligomer denaturation without disassembly. Partial unfolding and limited proteolysis studies demonstrated that domains II and III were less stable and unfold first, followed by unfolding of the most stable domain I, and also that domain I is involved in monomer-monomer interaction. The thermal-induced unfolding and analysis of energy transfer from Trp residues to bound 1-anilinonaphthalene-8-sulfonic acid dye showed that in the membrane-inserted pore domains II and III are particularly sensitive to heat denaturation, in contrast to domain I, suggesting that only domain I may be inserted into the membrane. Finally, the insertion into the membrane of the oligomeric pre-pore structure was not affected by pH. However, a looser conformation of the membrane-inserted domain I induced by neutral or alkaline pH correlates with active channel formation. Our studies suggest for the first time that a more flexible conformation of Cry toxin could be necessary for membrane insertion, and this flexible structure is induced by toxin oligomerization. Finally the alkaline pH found in the midgut lumen of lepidopteran insects could increase the flexibility of membrane-inserted domain I necessary for pore formation.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR channel pore to a range of cysteine-reactive reagents applied to the extracellular side of the membrane. Using functional modification of the channel current-voltage relationship as a marker of modification, we find that several positively charged reagents are able to penetrate deeply into the pore from the outside irrespective of whether or not the channels have been activated. In contrast, access of three anionic cysteine-reactive reagents, the methanesulfonate sodium (2-sulfonatoethyl)methanesulfonate, the organic mercurial p-chloromercuriphenylsulfonic acid, and the permeant anion Au(CN)(2)(-), to several different sites in the pore is strictly limited prior to channel activation. This suggests that in nonactivated channels some ion selectivity mechanism exists to exclude anions yet permit cations into the channel pore from the extracellular solution. We suggest that activation of CFTR channels involves a conformational change in the pore that removes a strong selectivity against anion entry from the extracellular solution. We propose further that this conformational change occurs in advance of channel opening, suggesting that multiple distinct closed pore conformations exist.  相似文献   

13.
Currents flowing through single dihydropyridine-sensitive Ca2+ channels were recorded from cell-attached patches on C2 myotubes. In the presence of dihydropyridine agonist to prolong the duration of single-channel openings, adding micromolar concentrations of lanthanum (La), cerium (Ce), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), or ytterbium (Yb) to patch electrodes containing 110 mM BaCl2 caused the unitary Ba2+ currents to fluctuate between fully open and shut states. The kinetics of channel blockade followed the predictions of a simple open channel block model in which the fluctuations of the single-channel current arose from the entry and exit of blocking ions from the pore. Entry rates for all the lanthanides tested were relatively insensitive to membrane potential, however, exit rates depended strongly on membrane potential increasing approximately e-fold per 23 mV with hyperpolarization. Individual lanthanide ions differed in both the absolute rates of ion entry and exit: entry rates decreased as cationic radius decreased; exit rates also decreased with cationic radius during the first part of the lanthanide series but then showed little change during the latter part of the series. Overall, the results support the idea that smaller ions enter the channel more slowly, presumably because they dehydrate more slowly; smaller ions also bind more tightly to a site within the channel pore, but lanthanide residence time within the channel approaches a maximum for the smaller cations with radii less than or equal to that of Ca2+.  相似文献   

14.
Various studies have focused in the relative contribution of different voltage-activated Ca2+ channels (VACC) to total transmitter release. However, how Ca2+ entry through a given VACC subtype defines the pattern of individual exocytotic events remains unknown. To address this question, we have used amperometry in bovine chromaffin cells. L, N, and P/Q channels were individually or jointly blocked with furnidipine, ω-conotoxin GVIA, ω-agatoxin IVA, or ω-conotoxin MVIIC. The three channel types contributed similarly to cytosolic Ca2+ signals induced by 70 mmol/L K+. However, they exhibited different contributions to the frequency of exocytotic events and they were shown to differently regulate the final steps of the exocytosis. When compared with the other VACC subtypes, Ca2+ entry through P/Q channels effectively induced exocytosis, it decreased fusion pore stability and accelerated its expansion. Conversely, Ca2+ entry through N channels was less efficient in inducing exocytotic events, also slowing fusion pore expansion. Finally, Ca2+ entry through L channels inefficiently induced exocytosis, and the individual blockade of this channel significantly modified fusion pore dynamics. The distance between a given VACC subtype and the release sites could account for the differential effects of the distinct VACC on the fusion pore dynamics.  相似文献   

15.
The P segments of the voltage-dependent Na+ channel line the outer mouth and selectivity filter of the pore. The residues that form the cytoplasmic mouth of the pore of the channel have not been identified. To study the structure of the inner pore mouth, the presumed selectivity filter residues (D400, E755, K1237, and A1529), and three amino acids just amino-terminal to each of these residues in the rat skeletal muscle Na+ channel, were mutated to cysteine and expressed in tsA 201 cells. These amino acids are predicted (by analogy to K+ channels) to be on the cytoplasmic side of the putative selectivity filter residues. Inward and outward Na+ currents were measured with the whole-cell configuration of the patch-clamp technique. Cysteinyl side-chain accessibility was gauged by sensitivity to Cd2+ block and by reactivity with methanethiosulfonate (MTS) reagents applied to both the inside and the outside of the cell. Outward currents through the wild-type and all of the mutant channels were unaffected by internal Cd2+ (100 microM). Similarly, 1 mM methanethiosulfonate ethylammonium (MTSEA) applied to the inside of the membrane did not affect wild-type or mutant outward currents. However, two mutants amino-terminal to the selectivity position in domain III (F1236C and T1235C) and one in domain IV (S1528C) were blocked with high affinity by external Cd2+. The Na+ current through F1236C and S1528C channels was inhibited by MTSEA applied to the outside of the cell. The accessibility of these mutants to externally applied cysteinyl ligands indicates that the side chains of the mutated residues face outward rather than inward. The K+ channel model of the P segments as protein loops that span the selectivity region is not applicable to the Na+ channel.  相似文献   

16.
The Shaker superfamily encodes voltage-gated potassium (Kv) channels. The N termini of Shaker proteins are located intracellularly and contain several domains shown to regulate important aspects of channel function, such as speed of inactivation, channel assembly (T1 domain), and steady state protein level (T0 domain, amino acids 3-39 in rabbit). Mutations and/or deletion of certain amino acids in the T0 domain lead to a 13-fold amplification of Kv current as compared with wild type channels, primarily by increasing the absolute number of channel proteins present in the membrane (Segal, A. S., Yao, X., and Desir, G. V. (1999) Biochem. Biophys. Res. Commun. 254, 54-64). Although T0 mutants have kinetic properties virtually indistinguishable from wild type, they were noted to have a slightly larger single channel conductance, suggesting that the T0 domain might also interact with the pore region. In the present study we show that although T0 does not affect pore selectivity, it does modulate the binding affinity of the pore blocker, charybdotoxin. These results suggest that the N terminus of Kv1.3 is closely associated with the pore region.  相似文献   

17.
Liu HL  Lin JC 《Proteins》2004,55(3):558-567
Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology models reveal that the pore loop domains of these Kv channels exhibit similar folds to those of KcsA. The structural features and specific packing of aromatic residues around the selectivity filter of these Kv channels are nearly identical to those of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. The distribution of polar and nonpolar side chains on the surfaces of the KcsA and Kv channels reveals that they exhibit a segregation of side chains common to most integral membrane proteins. As the hydrogen bond between Glu71 and Asp80 in KcsA plays an important role in stabilizing the channel, the substituted Val residue in the Kv family corresponding to Glu71 of KcsA stabilizes the channel by making hydrophobic contact with Tyr residue from the signature sequence of the selectivity filter. The homology models of these Kv channels provide particularly attractive subjects for further structure-based studies.  相似文献   

18.
P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.  相似文献   

19.
A key feature of potassium channel function is the ability to switch between conducting and non-conducting states by undergoing conformational changes in response to cellular or extracellular signals. Such switching is facilitated by the mechanical coupling of gating domain movements to pore opening and closing. Two-pore domain potassium channels (K2P) conduct leak or background potassium-selective currents that are mostly time- and voltage-independent. These channels play a significant role in setting the cell resting membrane potential and, therefore modulate cell responsiveness and excitability. Thus, K2P channels are key players in numerous physiological processes and were recently shown to also be involved in human pathologies. It is well established that K2P channel conductance, open probability and cell surface expression are significantly modulated by various physical and chemical stimuli. However, in understanding how such signals are translated into conformational changes that open or close the channels gate, there remain more open questions than answers. A growing line of evidence suggests that the outer pore area assumes a critical role in gating K2P channels, in a manner reminiscent of C-type inactivation of voltage-gated potassium channels. In some K2P channels, this gating mechanism is facilitated in response to external pH levels. Recently, it was suggested that K2P channels also possess a lower activation gate that is positively coupled to the outer pore gate. The purpose of this review is to present an up-to-date summary of research describing the conformational changes and gating events that take place at the K2P channel ion-conducting pathway during the channel regulation.  相似文献   

20.
Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号