首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Without any exaggeration, cholesterol is one of the most important lipid species in eukaryotic cells. Its effects on cellular membranes and functions range from purely mechanistic to complex metabolic ones, besides which it is also a precursor of the sex hormones (steroids) and several vitamins. In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches.  相似文献   

2.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

3.
Biological membranes are heterogeneous assemblies of lipids, proteins, and cholesterol that are organized as asymmetric bimolecular leaflets of lipids with embedded proteins. Modulated by the concentration of cholesterol lipids and proteins may segregate into two or more liquid phases with different physical properties that can coexist in the same membrane. In this review, we summarize recent advances on how this situation can be recreated in a supported bilayer format and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet by lipid compositions that are typical for the outer leaflet of mammalian plasma membranes. Proteins are shown to differentially target such induced inner leaflet domains.  相似文献   

4.
Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and discussed in terms of relevance to ABC transporter function. We will focus on three ABC transporters of the A, B and C subfamily, respectively. Two of these transporters are relevant to multidrug resistance in tumor cells (Pgp/ABCB1 and MRP1/ABCC1), while the third (ABCA1) is extensively studied in relation to the reverse cholesterol pathway and cellular cholesterol homeostasis. We will attempt to derive a generalized model of lipid rafts to which they associate based on the use of various different lipid raft isolation procedures. In the context of lipid rafts, modulation of ABC transporter localization and function by two relevant lipid classes, i.e. sphingolipids and cholesterol, will be discussed.  相似文献   

5.
固醇调节元件结合蛋白与脂质代谢   总被引:3,自引:0,他引:3  
Tang T  Li Y 《生理科学进展》2005,36(1):29-34
固醇调节元件结合蛋白(sterol regulatory element-binding proteins,SREBPs)是脊椎动物细胞脂质稳态的转录调节物,可直接激活多个参与胆固醇、脂肪酸、甘油三酯、磷脂合成和摄取,以及辅助因子NADPH等基因的表达,从而调控胆固醇及脂肪酸等脂类的代谢过程。本文综述了SREBPs转运和活化的过程,以及调节细胞脂质稳态功能的分子机制,并探讨了其在脂代谢紊乱相关疾病发生中的重要作用。  相似文献   

6.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

7.
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.  相似文献   

8.
Two human mAbs (2F5 and 4E10), originally derived from HIV-1-infected patients, are important, but rare, mAbs that exhibit broad cross-clade neutralizing activities against HIV-1. In addition to peptide sequences on the gp41 envelope protein, both antibodies reportedly also bound specifically to several phospholipid antigens. However, the phospholipid binding property of 2F5 has been disputed and, because of uncertainly regarding phospholipid binding, the modeling of neutralizing mechanisms has been difficult. To explore this issue, we examined the binding of 4E10 and 2F5 to a broad range of lipid antigens by ELISA. 4E10 and 2F5 both bound to a variety of purified phospholipids, and 4E10 bound, but 2F5 did not bind, to cardiolipin. Both mAbs also bound to a sulfated glycolipid, sulfogalactosyl ceramide (sulfatide), and to two neutral glycolipids, galactosyl ceramide and glucosyl ceramide, but not to other galactosyl glycolipids. 4E10, but not 2F5, also bound to cholesterol, although both mAbs bound to squalene. Interestingly, 4E10, but not 2F5, exhibited striking binding to lipid A, the lipid moiety of Gram-negative bacterial lipopolysaccharide. The binding properties of 4E10 to phospholipids, sulfatide, cholesterol, squalene, and lipid A were similar to those of a neutralizing murine mAb (WR304) induced by liposomes containing phosphatidylinositol phosphate and lipid A, although WR304 did not bind to neutral glycolipids. The discovery of a binding specificity of 4E10 for lipid A, a widely used vaccine adjuvant, suggests that innate immunity stimulated by lipid A could have played a role for induction of multispecific antibodies that simultaneously recognize both HIV-1 protein and lipid antigens.  相似文献   

9.
Polyphenol-rich dietary foodstuffs, consumed as an integral part of vegetables, fruits, and beverages have attracted attention due to their antioxidant and anticancer properties. Ellagic acid (EA), a polyphenolic compound widely distributed in fruits and nuts, has been reported to scavenge free radicals and inhibit lipid peroxidation. Chronic consumption of alcohol potentially results in serious illness including hepatitis, fatty liver, hypertriglyceridemia, and cirrhosis. A little is known about the influence of EA on alcohol toxicity in vivo. Accordingly, in the present study, we have evaluated the protective effects of EA on lipid peroxidation and lipid levels during alcohol-induced toxicity in experimental rats. Forty female albino Wistar rats, which were weighing between 150-170 g were used for the study. The toxicity was induced by administration of 20% alcohol orally (7.9 g/kg body wt.) for 45 days. Rats were treated with EA at three different doses (30, 60, and 90 mg/kg body wt.) via intragastric intubations together with alcohol. At the end of experimental duration, liver marker enzymes (i.e., aspartate transaminase, alanine transaminase), lipid peroxidative indices (i.e., thiobarbituriacid reactive substances and hydroperoxides) in plasma, and lipid levels (i.e., cholesterol, free fatty acids, triglycerides and phospholipids) in tissues were analyzed to evaluate the antiperoxidative and antilipidemic effects of EA. Liver marker enzymes, lipid peroxidative indices, and lipid levels, i.e., cholesterol, triglycerides and free fatty acids, were significantly increased whereas phospholipid levels were significantly decreased in the alcohol-administered group. EA treatment resulted in positive modulation of marker enzymes, peroxidative indices, and lipid levels. EA at the dose of 60 mg/kg body wt. was found to be more effective when compared to the other two doses. Histological changes observed were also inconsistent with the biochemical parameters. Our study suggests that EA exerts beneficial effects at the dosage of 60 mg/kg body wt. against alcohol-induced damage, and it can be used as a potential drug for the treatment of alcohol-abuse ailments in the near future.  相似文献   

10.
Sperm gain full ability to bind to the zona(e) pellucida(e) (ZP) during capacitation. Since lipid rafts are implicated in cell adhesion, we determined whether capacitated sperm lipid rafts had affinity for the ZP. We demonstrated that lipid rafts, isolated as low-density detergent resistant membranes (DRMs), from capacitated pig sperm had ability to bind to homologous ZP. This binding was dependent on pig ZPB glycoprotein, a major participant in sperm binding. Capacitated sperm DRMs were also enriched in the male germ cell specific sulfogalactosylglycerolipid (SGG), which contributed to DRMs-ZP binding. Furthermore, SGG may participate in the formation of sperm DRMs due to its interaction with cholesterol, an integral component of lipid rafts, as shown by infrared spectroscopic studies. Since sperm capacitation is associated with cholesterol efflux from the sperm membrane, we questioned whether the formation of DRMs was compromised in capacitated sperm. Our studies indeed revealed that capacitation induced increased levels of sperm DRMs, with an enhanced ZP affinity. These results corroborated the implication of lipid rafts and SGG in cell adhesion and strongly suggested that the enhanced ZP binding ability of capacitated sperm may be attributed to increased levels and a greater ZP affinity of lipid rafts in the sperm plasma membrane.  相似文献   

11.
Lipid droplets (LDs) are ubiquitous and physiologically active organelles regulating storage and mobilization of lipids in response to metabolic demands. Among the constituent LD neutral lipids, such as triacylglycerols, cholesterol esters, and free fatty acids, oxidizable polyunsaturated molecular species may be quite abundant, yet the structural and functional roles of their oxidation products have not been studied. Our previous work documented the presence of these peroxidized species in LDs. Assuming that hydrophilic oxygen-containing functionalities may markedly change the hydrophobic/hydrophilic molecular balance, here we utilized computational modeling to test the hypothesis that lipid peroxidation causes redistribution of lipids between the highly hydrophobic core and the polar surface (phospho)lipid monolayer—the area enriched with integrated enzymatic machinery. Using quantitative liquid chromatography/mass spectrometry, we characterized molecular speciation of oxTAGs in LDs of dendritic cells in cancer and hypoxic trophoblasts cells as two cellular models associated with dyslipidemia. Among the many types of oxidized lipids identified, we found that oxidatively truncated forms and hydroxyl derivatives of TAGs were the prevailing oxidized lipid species in LDs in both cell types. Using coarse-grained molecular dynamics (CG-MD) simulations we established that lipid oxidation changed their partitioning whereby oxidized lipids migrated into the outer monolayer of the LD, where they can affect essential metabolic pathways and undergo conversions, possibly leading to the formation of oxygenated lipid mediators.  相似文献   

12.
The anti-cancer drug tamoxifen is a potent inhibitor of lipid peroxidation induced by Fe(III)-ascorbate in ox-brain phospholipid liposomes. Similar anti-oxidant effects, but with varying potencies, are also shown by 4-hydroxytamoxifen, cholesterol, ergosterol and 17-β-oestradiol. We now describe a computer-graphic fitting technique that demonstrates a structural similarity between the five compounds. In addition, we have quantified the differences (relative to cholesterol) between the anti-oxidant activities of the compounds in terms of a novel expression reffered to here as the cholesterol coefficient (Cc) Finally, we discuss how the inhibitory effect of tamoxifen on lipid peroxidation may result from a membrane stabilization that is associated with a decrease in membrane fluidity. This action may be related to the anti-proliferative effect exerted by tamoxifen on cancer and fungal cells.  相似文献   

13.
What distinguishes polyunsaturated fatty acids (PUFAs) from less unsaturated fatty acids is the presence of a repeating CH–CH2–CH unit that produces an extremely flexible structure rapidly isomerizing through conformational states. Docosahexaenoic acid (DHA) with 6 double bonds is the most extreme example. The focus of this review is the profound impact that the high disorder of DHA has on its interaction with cholesterol when the PUFA is incorporated into membrane phospholipids. Results from a battery of biophysical techniques are described. They demonstrate an aversion of DHA for the sterol that drives the lateral segregation of DHA-containing phospholipids into liquid disordered (ld) domains that are depleted in cholesterol. These domains are compositionally and organizationally the antithesis of lipid rafts, the much-studied liquid ordered (lo) domain that is enriched in predominantly saturated sphingolipids and cholesterol. We hypothesize that the introduction of DHA-rich domains into the plasma membrane where they coexist with lipid rafts is the origin, in part, of the astonishing diversity of health benefits that accrue from dietary consumption of DHA. According to our model, changes in the conformation of signaling proteins when they move between these disparate domains have the potential to modulate cell function.  相似文献   

14.
Here we present a fluorescence method based on the Stokes shift of the voltage-sensitive dye di-8-ANEPPS to quantify the orientational polarisability of lipid membrane surfaces, i.e. the polarisability due to molecular reorientation. Di-8-ANEPPS is already an established probe of membrane dipole potential. Its use, therefore, as a probe of both the dipole potential and orientational polarisability allows a direct comparison of these two properties in an identical region of the lipid bilayer. We applied the new technique on phosphatidylcholine vesicles to study the effects of different degrees of hydrocarbon saturation and of the incorporation of cholesterol and some of its oxidized derivatives. We found that lipids with unsaturated chains had a lower orientational polarisability than those with saturated chains. This could be explained by a reduction in membrane dipole potential as a result of a decrease in lipid packing density. Cholesterol derivatives were found to either increase or decrease the orientational polarisability depending on their molecular structure. The varying effects could be explained by antagonistic effects of the dipole potential and membrane order, which are both changed to varying degrees by the cholesterol derivatives and which lead to increases and decreases in orientational polarisability, respectively.  相似文献   

15.
Lipid composition of biological membranes is closely related to the function of the ATP-binding cassette (ABC) transporter P-Glycoprotein (Pgp). Herein, we studied how membrane physico-chemical properties affect Pgp-activity. We effectively modulated the cellular cholesterol content using methyl-beta-cyclodextrin (MbetaCD) and MbetaCD-cholesterol-inclusion complex. Pgp was not liberated from the plasma membrane during cholesterol modulation and functional inhibition of Pgp was related to varying cholesterol levels in the plasma membrane. Our data indicate that membrane fluidity does not solely account for cholesterol dependent modifications of Pgp-activity. Therefore, we isolated lipid rafts and examined distinct membrane microdomains. Both depletion and cholesterol enrichment induces a disassembly of lipid rafts. In cholesterol-depleted cell membranes a shift in the Pgp localisation to detergent soluble fractions was observed. Enrichment of membrane cholesterol changed lipid raft distribution but not the localisation of Pgp. From our data we conclude that Pgp-transport capacity depends on accurate lipid raft properties.  相似文献   

16.
Sterol carrier protein-2 (SCP-2) is an intracellular lipid carrier protein that binds cholesterol, phospholipids, fatty acids and other ligands. It has been reported that expression of SCP-2 was increased in brain nerve endings or synaptosomes of chronic ethanol-treated mice and it was shown that cholesterol homeostasis was altered in brain membranes of chronic ethanol-treated animals. Ethanol may interfere with the capacity of SCP-2 to bind cholesterol as well as other lipids. This hypothesis was tested using recombinant SCP-2 and fluorescent-labeled cholesterol, phosphatidylcholine (PC), and stearic acid. The association constants (Ka) of the ligand-SCP-2 complex were in the following order: NBD-cholesterol>NBD-PC>NBD-stearic acid. Ethanol, beginning at a concentration of 25 mM, significantly reduced the affinity of NBD-cholesterol and NBD-PC for SCP-2. Effects of ethanol on the Ka of NBD-stearic acid was significant only at the highest concentration that was examined (200 mM). Ethanol significantly increased the Bmax of NBD-cholesterol for SCP-2 but did not have a significant effect on the Bmax of NBD-PC. Similar results were found for effects of ethanol on the Kas and Bmaxs using pyrene-labeled cholesterol and PC. In conclusion, ethanol beginning at a physiological concentration of 25 mM inhibited binding of cholesterol and PC to SCP-2. However, effects of ethanol on lipid binding to SCP-2 were dependent on the type of lipid. Ethanol in vivo may interfere with lipid binding to SCP-2 and disrupt lipid trafficking within cells.  相似文献   

17.
TRPC channels are a subset of the transient receptor potential (TRP) proteins widely expressed in mammalian cells. They are thought to be primarily involved in determining calcium or sodium entry and have broad-ranging functions that include regulation of cell proliferation, motility and contraction. The channels do not respond to a single stimulator but rather are activated or modulated by a multiplicity of factors, potentially existing as integrators at the plasma membrane. This review considers the sensitivity of TRPCs to lipid factors, with focus on sensitivities to diacylglycerols, lysophospholipids, arachidonic acid and its metabolites, sphingosine-1-phosphate (S1P), cholesterol and derivatives, and other lipid factors such as gangliosides. Promiscuous and selective lipid-sensing are apparent. In many cases the lipids stimulate channel function or increase insertion of channels in the membrane. Both direct and indirect (receptor-dependent) lipid effects are evident. Although information is limited, the lipid profiles are consistent with TRPCs having close working relationships with phospholipase C and A2 enzymes. We need much more information about lipid-sensing by TRPCs if we are to fully appreciate its significance, but the available data suggest that lipid-sensing is a key, but not exclusive, aspect of TRPC biology.  相似文献   

18.
Maternal hyperlipidemia is a characteristic feature during pregnancy, it has been reported that modification of the maternal lipid profile can induce disturbance during pregnancy. In this study, we evaluated the impact of maternal lipid profile on the placental protein expression of two major receptors in cholesterol metabolism, the low density lipoprotein receptor (LDLr) and the scavenger receptor type B1 (SR-B1). We demonstrate an increase in the level of maternal total circulating cholesterol leads to a significant decrease in the level of the LDLr protein expression, while the level of the SR-BI expression remains unchanged. A similar change, for LDLr, is observed in association with the maternal pre-pregnancy body mass index and weight gain. Our data suggest that the LDLr plays a role in regulating cholesterol delivered to the baby from the placenta.  相似文献   

19.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   

20.
This review details how bilayer structural/elastic properties impact three distinct areas of biological significance. First, the partitioning of melittin into bilayers and melittin-induced bilayer leakage depended strongly on bilayer composition. The incorporation of cholesterol into phosphatidylcholine bilayers decreased melittin-induced leakage from 73 to 3%, and bilayers composed of lipopolysaccharide (LPS), the main lipid on the surface of Gram-negative bacteria, also had low (3%) melittin-induced leakage. Second, transbilayer peptides of different hydrophobic lengths were largely excluded from bilayer microdomains (“rafts”) enriched in sphingomyelin (SM) and cholesterol, even when the length of the transbilayer peptide domain matched the hydrocarbon thickness of the raft bilayer. This is likely due to the large area compressibility modulus of SM:cholesterol bilayers. Third, the major water barrier of skin, the extracellular lamellae of the stratum corneum, was found to contain tightly packed asymmetric lipid bilayers with cholesterol located preferentially on one side of the bilayer and a unique skin ceramide containing an unsaturated acyl chain on the opposite side. We argue that, in each of these three areas, key factors are differences in lipid hydrocarbon chain packing for different lipids, particularly the tight hydrocarbon chain packing caused by cholesterol’s strong interaction with saturated chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号