首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanolipoprotein particles (NLPs) represent a unique nanometer-sized scaffold for supporting membrane proteins (MP). Characterization of their dynamic shape and association with MP in solution remains a challenge. Here, we present a rapid method of analysis by fluorescence correlation spectroscopy (FCS) to characterize bacteriorhodopsin (bR), a membrane protein capable of forming a NLP complex. By selectively labeling individual components of NLPs during cell-free synthesis, FCS enabled us to measure specific NLP diffusion times and infer size information for different NLP species. The resulting bR-loaded NLPs were shown to be dynamically discoidal in solution with a mean diameter of 7.8 nm. The insertion rate of bR in the complex was ~55% based on a fit model incorporating two separate diffusion properties to best approximate the FCS data. More importantly, based on these data, we infer that membrane protein associated NLPs are thermodynamically constrained as discs in solution, while empty NLPs appear to be less constrained and dynamically spherical.  相似文献   

2.
Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon. Understanding the source of this heterogeneity may lead to methods to mitigate heterogeneity or to control NLP size, which may be important for tailoring NLPs for specific membrane proteins. Here, we have used atomic force microscopy, ion mobility spectrometry, and transmission electron microscopy to quantify NLP size distributions on the single-particle scale, specifically focusing on assemblies with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a recombinant apolipoprotein E variant containing the N-terminal 22 kDa fragment (E422k). Four discrete sizes of E422k/DMPC NLPs were identified by all three techniques, with diameters centered at approximately 14.5, 19, 23.5, and 28 nm. Computer simulations suggest that these sizes are related to the structure and number of E422k lipoproteins surrounding the NLPs and particles with an odd number of lipoproteins are consistent with the double-belt model, in which at least one lipoprotein adopts a hairpin structure.  相似文献   

3.
Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.  相似文献   

4.
Nanolipoprotein particles (NLPs) are nanometer‐scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein “scaffold,” which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell‐free protein synthesis followed by self‐assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps. Telodendrimers (TD) are branched polymers made up of a dendritic oligo‐lysine core that is conjugated to linear polyethylene glycol (PEG) on one end, and the lysine “branches” are terminated with cholic acid moieties that enable the formation of nanomicelles in aqueous solution. We report herein that the addition of TD during cell‐free synthesis of NLPs produces unique hybrid nanoparticles that have drastically reduced polydispersity as compared to NLPs made in the absence of TD. This finding was supported by dynamic light scattering, fluorescence correlation spectroscopy, and cryo transmission electron microscopy (Cryo‐EM). These techniques demonstrate the ability of TDs to modulate both the NLP size (6–30 nm) and polydispersity. The telodendrimer NLPs (TD‐NLPs) also showed 80% less aggregation as compared to NLPs alone. Furthermore, the versatility of these novel nanoparticles was shown through direct conjugation of small molecules such as fluorescent dyes directly to the TD as well as the insertion of a functional membrane protein.  相似文献   

5.

Background

Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs.

Methodology

Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4°C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes.

Conclusions

ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications.  相似文献   

6.
NEP1-like proteins (NLPs) are secreted proteins from fungi, oomycetes and bacteria, triggering immune responses and cell death in dicotyledonous plants. It has been unclear for a long time, whether NLPs are toxins or triggers of plant immunity. In a recent study we report that NLPs are toxins that exert cytolytic activity on dicotyledonous plants. Mutational analysis revealed a causal link between membrane damaging, cell death inducing and virulence promoting properties of NLPs. Interestingly, also induction of immune responses by NLPs required the same protein fold, providing evidence for damage-induced immunity in plants. Structural similarity to pore forming toxins from marine invertebrates allows the proposal of a model for the mode of NLP interaction with the host''s membrane.Key words: toxin, immunity, virulence, crystal structure, plant immunity, pathogen  相似文献   

7.
The assembly of hepatitis C virus (HCV) is not well understood. We investigated HCV nucleocapsid assembly in vitro and the role of electrostatic/hydrophobic interactions in this process. We developed a simple and rapid in vitro assay in which the progress of assembly is monitored by measuring an increase in turbidity, thereby allowing the kinetics of assembly to be determined. Assembly is performed using a truncated HCV core (C1-82), containing the minimal assembly domain, purified from Escherichia coli. The increase in turbidity is linked to the formation of nucleocapsid-like particles (NLPs) in solution, and nucleic acids are essential to initiate nucleocapsid assembly under the experimental conditions used. The sensitivity of NLP formation to salt strongly suggests that electrostatic forces govern in vitro assembly. Mutational analysis of C1-82 demonstrated that it is the global positive charge of C1-82 rather than any specific basic residue that is important for the assembly process. Our in vitro assembly assay provides an easy and efficient means of screening for assembly inhibitors, and we have identified several inhibitory peptides that could represent a starting point for drug design.  相似文献   

8.
The relationship between HCV core protein (HCcAg) processing and the structural composition and morphogenesis of nucleocapsid-like particles (NLPs) produced in Pichia pastoris cells was studied. At early stages of heterologous expression, data suggest that HCcAg (in the P21 form) was transported soon after its synthesis in the cytoplasm into the nucleus. HCcAg assembly into nucleocapsid-like particles with 20-30 nm in diameter took place primary in the cell nucleus. However, at later stages, when P21 and P23 forms were co-detected, data suggest that new assembly of nucleocapsid particles containing P21 possibly occurs at ER membranes and in the cytoplasm. This is the first report showing that structured HCV NLPs composed of P21 core protein assemble primary in the nucleus of P. pastoris yeast.  相似文献   

9.
Nanodiscs, phospholipid bilayer assemblies of controlled size, were used to self-assemble bacteriorhodopsin (bR) into single trimers. Self-assembly at optimal bR to Nanodisc and phospholipid stoichiometry yielded particles containing three bR molecules. Analysis of solution small angle X-ray scattering indicated that bacteriorhodopsin is embedded in a discoidal phospholipid bilayer structure. Formation of trimers, as evidenced by visible circular dichroism of the retinal absorbance bands, is facilitated in Nanodiscs at a specific size threshold, suggesting that a critical bilayer area or amount of lipid is necessary to maintain a native oligomeric state. The lipid to bR ratio in the assembly process was also found to be an important factor in determining oligomerization state. These nanoscale bilayers offer the opportunity to understand and control the assembly of oligomeric integral membrane proteins critical to macromolecular recognition and cellular signaling.  相似文献   

10.
Papaya mosaic potexvirus (PapMV) coat protein (CP) was expressed (CPdeltaN5) in Escherichia coli and showed to self assemble into nucleocapsid like particles (NLPs). Twenty per cent of the purified protein was found as NLPs of 50 nm in length and 80% was found as a multimer of 450 kDa (20 subunits) arranged in a disk. Two mutants in the RNA binding domain of the PapMV CP, K97A and E128A showed interesting properties. The proteins of both mutants could be easily purified and CD spectra of these proteins showed secondary and tertiary structures similar to the WT protein. The mutant K97A was unable to self assemble and bind RNA. On the contrary, the mutant E128A showed an improved affinity for RNA and self assembled more efficiently in NLPs. E128A NLPs were longer (150 nm) than the recombinant CPdeltaN5 and 100% percent of the protein was found as NLPs in bacteria. E128A NLPs were more resistant to digestion by trypsin than the CPdeltaN5 but were more sensitive to denaturation by heat. We discuss the possible role of K97 and E128 in the assembly of PapMV.  相似文献   

11.
BACKGROUND: We have studied the effects of the poly(ethylene glycol) (PEG) chain length and acyl chain composition on the pH-sensitivity of acid-labile PEG-diorthoester (POD) lipids. The optimal conditions are described for preparation of DNA plasmid encapsulated POD nanolipoparticles (NLPs) which mediate high gene delivery activity in vitro with moderate cytotoxicity. METHODS AND RESULTS: A series of POD lipids with various PEG chain lengths (750, 2000, and 5000 Da) or acyl chains (distearoyl 18:0 or dioleoyl 18:1) were incorporated into DNA containing NLPs or model liposomes as a stealth and bioresponsive component. We investigated the collapse kinetics of the POD-stabilized liposomes when the PEG chain length was changed. We optimized a detergent dialysis method to encapsulate plasmid DNA into NLPs prepared from a mixture of the various POD lipids, cationic lipid and phosphatidylethanolamine lipid. A critical concentration (28 mM) of n-octyl-beta-D-glucopyranoside (OG) enabled high encapsulation of DNA plasmid into 100 nm particles with a neutral surface charge. The POD NLPs are stable at pH 8.5 but rapidly collapse (approximately 10 min) into aggregates at pH 5.0. In the detergent solution there is a metastable DNA-lipid intermediate that evolves into a stable NLP if the detergent is removed shortly after adding DNA to the lipid-detergent mixture. The rank order of transfection activity from NLPs containing PEG-lipid was POD 750 > POD 5000 = POD 2000 > non-pH-sensitive PEG-lipid. The particle size stability was in the reverse order. Binding of the NLPs to cells reached a maximum level by 12 hours. The POD NLPs had slightly less transfection activity but considerably lower cytotoxicity than the PEI-DNA polyplex. CONCLUSIONS: Of the PEG-orthoester lipids tested, POD 2000 is the better choice for the preparation of sterically stabilized NLPs with a small particle diameter, good stability, low cytotoxicity, and satisfactory transfection activity.  相似文献   

12.
Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.  相似文献   

13.
Natronobacterium pharaonis phoborhodopsin (ppR; also called N. pharaonis sensory rhodopsin II, NpsRII) is a photophobic sensor in N. pharaonis, and has a shorter absorption maximum (lambdamax, 500 nm) than those of other archaeal retinal proteins (lambdamax, 560-590 nm) such as bacteriorhodopsin (bR). We constructed chimeric proteins between bR and ppR to investigate the long range interactions effecting the color regulation among archaeal retinal proteins. The lambdamax of B-DEFG/P-ABC was 545 nm, similar to that of bR expressed in Escherichia coli (lambdamax, 550 nm). B-DEFG/P-ABC means a chimera composed of helices D, E, F, and G of bR and helices A, B, and C of ppR. This indicates that the major factor(s) determining the difference in lambdamax between bR and ppR exist in helices DEFG. To specify the more minute regions for the color determination between bR and ppR, we constructed 15 chimeric proteins containing helices D, E, F, and G of bR. According to the absorption spectra of the various chimeric proteins, the interaction between helices D and E as well as the effect of the hydroxyl group around protonated Schiff base on helix G (Thr-204 for ppR and Ala-215 for bR) are the main factors for spectral tuning between bR and ppR.  相似文献   

14.
The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.  相似文献   

15.
Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.  相似文献   

16.
The primary function of the hepatitis C virus (HCV) core protein is genome encapsidation. Core protein is also subject to post-translational modifications that can impact on the assembly process. In this report, we have studied the effect of cAMP-dependent protein kinase A (PKA) phosphorylation on its assembly and stability in a yeast Pichia pastoris expression system. We have recently shown that co-expression of the human signal peptide peptidase and core protein (amino acids 1-191) in yeast leads to the formation of nucleocapsid-like particles (NLPs) that are morphologically similar to the wild-type HCV capsid. In this system, we expressed mutants S53A and S116A and mutants S53D and S116D to abolish or mimic PKA phosphorylation, respectively. None of these mutations affected HCV assembly, but S116D led to the degradation of core protein. We also showed that nonenveloped NLPs were labelled in vitro by PKA, suggesting that the phosphorylation sites are available at the surface of the NLPs. The co-expression of human PKA with core and human signal peptide peptidase in yeast did not produce phosphorylated NLPs and led to a decreased accumulation of nonenveloped particles. Mutation S116A restored the core protein content. These results suggest that PKA phosphorylation can modulate HCV core levels in infected cells.  相似文献   

17.
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native‐like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent‐solubilized protein‐lipid mixture. Recently, an alternative method has been developed using direct cell‐free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell‐free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell‐free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core‐shell cylinder type model to all SANS/SAXS data simultaneously.  相似文献   

18.
Technical challenges have greatly impeded the investigation of membrane protein folding and unfolding. To develop a new tool that facilitates the study of membrane proteins, we tested pulse proteolysis as a probe for membrane protein unfolding. Pulse proteolysis is a method to monitor protein folding and unfolding, which exploits the significant difference in proteolytic susceptibility between folded and unfolded proteins. This method requires only a small amount of protein and, in many cases, may be used with unpurified proteins in cell lysates. To evaluate the effectiveness of pulse proteolysis as a probe for membrane protein unfolding, we chose Halobacterium halobium bacteriorhodopsin (bR) as a model system. The denaturation of bR in SDS has been investigated extensively by monitoring the change in the absorbance at 560 nm (A560). In this work, we demonstrate that denaturation of bR by SDS results in a significant increase in its susceptibility to proteolysis by subtilisin. When pulse proteolysis was applied to bR incubated in varying concentrations of SDS, the remaining intact protein determined by electrophoresis shows a cooperative transition. The midpoint of the cooperative transition (Cm) shows excellent agreement with that determined by A560. The Cm values determined by pulse proteolysis for M56A and Y57A bRs are also consistent with the measurements made by A560. Our results suggest that pulse proteolysis is a quantitative tool to probe membrane protein unfolding. Combining pulse proteolysis with Western blotting may allow the investigation of membrane protein unfolding in situ without overexpression or purification.  相似文献   

19.
It is believed that flavivirus assembly occurs by intracellular budding of the nucleocapsid into the lumen of the endoplasmic reticulum (ER). Recombinant expression of tick-borne encephalitis (TBE) virus envelope proteins prM and E in mammalian cells leads to their incorporation into enveloped recombinant subviral particles (RSPs), which have been used as a model system for studying assembly and entry processes and are also promising vaccine candidates. In this study, we analyzed the formation and secretion of TBE virus RSPs and of a membrane anchor-free E homodimer in mammalian cells. Immunofluorescence microscopy showed that E was accumulated in the lumen of the ER. RSPs were observed by electron microscopy in the rough and smooth ER and in downstream compartments of the secretory pathway. About 75% of the particles appeared to be of the size expected for RSPs (about 30 nm in diameter), but a number of larger particles and tubular structures were also observed in these compartments. Secretion of membrane anchor-free E dimers was detected 30 min after synthesis of prM and E, and secretion of RSPs was detected 1 h after synthesis of prM and E. We also found that the presence of the single N-linked oligosaccharide side chain on the E protein and its trimming by glucosidases was necessary for secretion of RSPs and truncated E dimers. Our results suggest that incorporation of prM and E into RSPs occurs at the ER membrane without other viral elements being required, followed by rapid transport along the compartments of the secretory pathway and secretion. Moreover, the carbohydrate side chain of E is involved in at least one assembly or transport step.  相似文献   

20.
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250?nm) than those containing non-raft proteins (<20?nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different – the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号