首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

2.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

3.
We performed comparative DSC and FTIR spectroscopic measurements of the effects of cholesterol (Chol) and ergosterol (Erg) on the thermotropic phase behavior and organization of DPPC bilayers. Ergosterol is the major sterol in the biological membranes of yeasts, fungi and many protozoa. It differs from Chol in having two additional double bonds, one in the steroid nucleus at C7-8 and another in the alkyl chain at C22-23. Erg also has an additional methyl group in the alkyl chain at C24. Our DSC studies indicate that the incorporation of Erg is more effective than Chol is in reducing the enthalpy of the pretransition. At lower concentrations Erg is also more effective than Chol in reducing the enthalpies of both the sharp and broad components of main phase transition. However, at sterol concentrations from 30 to 50 mol%, Erg is generally less effective at reducing the enthalpy of the broad components and does not completely abolish the cooperative hydrocarbon chain-melting phase transition at 50 mol%, as does Chol. Nevertheless, in this higher ergosterol concentration range, there is no evidence of the formation of ergosterol crystallites. Our FTIR spectroscopic studies demonstrate that Erg incorporation produces a similar ordering of liquid-crystalline DPPC bilayers as does Chol, but an increased degree of hydrogen bonding of the fatty acyl carbonyl groups in the glycerol backbone region of the DPPC bilayer. These and other results indicate that Erg is less miscible in DPPC bilayers at higher concentrations than is Chol. Finally, we provide a tentative molecular explanation for the comparative experimental and computation results obtained for Erg and Chol in phospholipid bilayers, emphasizing the dynamic conformational differences between these two sterols.  相似文献   

4.
We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~ 30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.  相似文献   

5.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.  相似文献   

6.
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains.  相似文献   

7.
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.  相似文献   

8.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

9.
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct.  相似文献   

10.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the “left endpoint” and “right endpoint” of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

11.
Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system.  相似文献   

12.
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using 31P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (Lβ) to liquid-crystalline (Lα) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the Lα to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the Lα phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.  相似文献   

13.
The biophysical properties of a series of glycosyl dialkyl- and diacyl-glycerols bearing unsaturated or chiral methyl branched chains in the tail, and di- and trisaccharide carbohydrate headgroups are described. Thermotropism was investigated by polarising microscopy, the lyotropism was investigated by small angle X-ray diffraction and by the contact preparation method, and the gel to liquid crystalline phase transition by FT-IR-spectroscopy. The compounds displayed thermotropic Smectic A (SmA), cubic and columnar phases, whereas in the lyotropic phase diagram lamellar, hexagonal and cubic phases are found. The introduction of unsaturated or methyl branched chains leads to liquid crystallinity at ambient temperature. The difference between the 1,3-oleyl-glycerol maltoside and the corresponding 1,2-oleoyl-glycerol maltoside is small.  相似文献   

14.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into α-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D2O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1 > aurein 1.2 > citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1 > aurein 1.2 ≅ citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

15.
We have used two-dimensional infrared correlation spectroscopy (2D-IR) to study the interaction and conformation of cytochrome c in the presence of a binary phospholipid mixture composed of a zwitterionic perdeuterated phospholipid and a negatively-charged one. The influence of the main temperature phase transition of the phospholipid model membranes on the conformation of cytochrome c has been evaluated by monitoring both the Amide I′ band of the protein and the CH2 and CD2 stretching bands of the phospholipids. Synchronous 2D-IR analysis has been used to determine the different secondary structure components of cytochrome c which are involved in the specific interaction with the phospholipids, revealing the existence of a specific interaction between the protein with cardiolipin-containing vesicles but not with phosphatidic acid-containing ones. Interestingly, 2D-IR is capable of showing the existence of significant changes in the protein conformation at the same time that the phospholipid transition occurs. In summary, 2D-IR revealed an important effect of the phospholipid phase transition of cardiolipin on the secondary structure of oxidized cytochrome c but not to either reduced cytochrome c or in the presence of phosphatidic acid, demonstrating the existence of specific intermolecular interactions between cardiolipin and cytochrome c.  相似文献   

16.
Membrane lipid peroxidation (LPO) induced by hydroxyl (*OH) and ascorbyl (*Asc) radicals and by peroxynitrite (ONOO-) was investigated in asolectin (ASO), egg phosphatidylcholine (PC) and PC/phosphatidic acid mixtures (PC:PA) liposomes and rat liver microsomes (MC). Enthalpy variation (DeltaH) of PC:PA at different molar ratios were obtained by differential scanning calorimetry. It was also evaluated the LPO inhibition by quercetin, melatonin and Vitamin B6. The oxidant effect power follows the order *OH approximately *Asc > ONOO- on PC and MC; whilst on ASO liposomes, it follows *Asc > *OH approximately ONOO-. Increasing amounts of PA in PC liposomes resulted in lower levels of LPO. The DeltaH values indicate a more ordered membrane arrangement as a function of PA amount. The results were discussed in order to provide a complete view involving the influence of membranes, oxidants and antioxidants intrinsic behavior on the LPO dynamics.  相似文献   

17.
Zeaxanthin, an important component in protection against overexcitation in higher plants, is formed from violaxanthin by the enzyme violaxanthin de-epoxidase. We have investigated factors that may control the maximal degree of conversion in the violaxanthin cycle. The conversion of violaxanthin to zeaxanthin in isolated spinach thylakoids was followed at different temperatures and in the presence of lipid packing modifiers. The maximum degree of conversion was found to be 35%, 70% and 80% at 4 °C, 25 °C and 37 °C respectively. In the presence of membrane modifying agents, known to promote non-lamellar structures (HII), such as linolenic acid the conversion increased, and the maximal level of violaxanthin de-epoxidation obtained was close to 100%. In contrast, substances promoting lamellar phases (Lα), such as α-tocopherol and 8-cetylether (C16EO8), only 55% and 35% of the violaxanthin was converted at 25 °C, respectively. The results are interpreted in light of the lipid composition of the thylakoid membrane, and we propose a model where a negative curvature elastic stress in the thylakoid lipid bilayer is required for violaxanthin de-epoxidase activity. In this model zeaxanthin with its longer hydrophobic stretch is proposed to promote lamellar arrangements of the membrane. As a result, zeaxanthin relieves the curvature elastic stress, which in turn leads to inactivation of violaxanthin de-epoxidase.  相似文献   

18.
Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and 31P and 2H solid-state NMR spectroscopy. SP-B59-80 forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B59-80 in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B59-80; in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B59-80 penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL4, a peptide mimetic of SP-B which was originally designed using SP-B59-80 as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment.  相似文献   

19.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

20.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号