首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have revealed unexpected links between cell polarity and proliferation, suggesting that the polarized organization of cells is necessary to regulate growth. Drosophila melanogaster is a genetically simple model that is especially suited for the study of polarity and growth control, as polarized tissues undergo a well-defined pattern of proliferation and differentiation during the development. In addition, genetic studies have identified a number of tumor suppressor genes, which later studies have shown to be associated with junctions, or in the regulation of junctional proteins. We will explore in this review the links between growth and apical junction proteins in the regulation of growth control in Drosophila.  相似文献   

2.
Cell polarity is fundamentally important to growth and development in higher plants, from pollen tubes to root hairs. Basal land plants (mosses and ferns) also have cell polarity, developing protonemal apical cells that show polar tip growth. Flowering plants have a distinct group of Rho GTPases that regulate polarity in polarized cell growth. Rop/RAC signaling module components have been identified in non-flowering plants, but their roles remain unclear. To understand the importance and evolution of Rop/RAC signaling in polarity regulation in land plants, we examined the functions of PpRop and PpRopGEF in protonemal apical cells of the moss Physcomitrella patens. Inducible overexpression of PpRop2 or PpRopGEF3 caused depolarized growth of tip-growing apical cells. PpRop2 overexpression also caused aberrant cross wall formation. Fluorescent protein-tagged PpRop2 localized to the plasma membrane, including the cross wall membrane, and fluorescent-tagged PpRopGEF3 showed polarized localization to the tip region in apical cells. Thus, our results suggest common functions of PpRop and PpRopGEF in the tip-growing apical cells and the importance of a conserved Rop/RAC signaling module in the control of cell polarity in land plants.  相似文献   

3.
The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.  相似文献   

4.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

5.
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a −/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts.  相似文献   

6.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

7.
The Frizzled family: receptors for multiple signal transduction pathways   总被引:2,自引:0,他引:2  
Frizzled genes encode integral membrane proteins that function in multiple signal transduction pathways. They have been identified in diverse animals, from sponges to humans. The family is defined by conserved structural features, including seven hydrophobic domains and a cysteine-rich ligand-binding domain. Frizzled proteins are receptors for secreted Wnt proteins, as well as other ligands, and also play a critical role in the regulation of cell polarity. Frizzled genes are essential for embryonic development, tissue and cell polarity, formation of neural synapses, and the regulation of proliferation, and many other processes in developing and adult organisms; mutations in human frizzled-4 have been linked to familial exudative vitreoretinopathy. It is not yet clear how Frizzleds couple to downstream effectors, and this is a focus of intense study.  相似文献   

8.
Formins perform essential roles in actin assembly and organization in vivo, but they also require tight regulation of their activities to produce properly functioning actin structures. Saccharomyces cerevisiae Bud14 is one member of an emerging class of formin regulators that target the FH2 domain to inhibit actin polymerization, but little is known about how these regulators are themselves controlled in vivo. Kelch proteins are critical for cell polarity and morphogenesis in a wide range of organisms, but their mechanistic roles in these processes are still largely undefined. Here, we report that S. cerevisiae Kelch proteins, Kel1 and Kel2, associate with Bud14 in cell extracts to form a stable 520-kDa complex with an apparent stoichiometry of 2:2:1 Bud14/Kel1/Kel2. Using pairwise combinations of GFP- and red fluorescent protein-tagged proteins, we show that Kel1, Kel2, and Bud14 interdependently co-localize at polarity sites. By analyzing single, double, and triple mutants, we show that Kel1 and Kel2 function in the same pathway as Bud14 in regulating Bnr1-mediated actin cable formation. Loss of any component of the complex results in long, bent, and hyper-stable actin cables, accompanied by defects in secretory vesicle traffic during polarized growth and septum formation during cytokinesis. These observations directly link S. cerevisiae Kelch proteins to the control of formin activity, and together with previous observations made for S. pombe homologues tea1p and tea3p, they have broad implications for understanding Kelch function in other systems.  相似文献   

9.
10.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

11.
A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.  相似文献   

12.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

13.
A flowering plant generates many different organs such as leaves, petals, and stamens, each with a particular function and shape. These types of organ are thought to represent variations on a common underlying developmental program. However, it is unclear how this program is modulated under different selective constraints to generate the diversity of forms observed. Here we address this problem by analysing the development of Arabidopsis petals and comparing the results to models of leaf development. We show that petal development involves a divergent polarity field with growth rates perpendicular to local polarity increasing towards the distal end of the petal. The hypothesis is supported by the observed pattern of clones induced at various stages of development and by analysis of polarity markers, which show a divergent pattern. We also show that JAGGED (JAG) has a key role in promoting distal enhancement of growth rates and influences the extent of the divergent polarity field. Furthermore, we reveal links between the polarity field and auxin function: auxin-responsive markers such as DR5 have a broader distribution along the distal petal margin, consistent with the broad distal organiser of polarity, and PETAL LOSS (PTL), which has been implicated in the control of auxin dynamics during petal initiation, is directly repressed by JAG. By comparing these results with those from studies on leaf development, we show how simple modifications of an underlying developmental system may generate distinct forms, providing flexibility for the evolution of different organ functions.  相似文献   

14.
15.
Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell–cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway’s earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell’s polarity state can be changed and then restored, underscoring the Ciona notochord’s amenability for in vivo studies of PCP.  相似文献   

16.
17.
Bacterial cells are spatiotemporally highly organised with proteins localising dynamically to distinct subcellular regions. Motility in the rod-shaped Myxococcus xanthus cells represents an example of signal-induced spatiotemporal regulation of cell polarity. M. xanthus cells move across surfaces with defined front–rear polarity; occasionally, they invert polarity and, in parallel, reverse direction of movement. The polarity module establishes front–rear polarity between reversals and consists of the Ras-like GTPase MglA and its cognate GEF and GAP, that all localise asymmetrically to the cell poles. The Frz chemosensory system constitutes the polarity inversion module and interfaces with the proteins of the polarity module, thereby triggering their polar repositioning. As a result, the polarity proteins, over time, toggle between the cell poles causing cells to oscillate irregularly. Here, we review recent progress in how front–rear polarity is established by the polarity module and inverted by the Frz system and highlight open questions for future studies.  相似文献   

18.
Developmental control of proliferation relies on tight regulation of protein expression. Although this has been well studied in early embryogenesis, how the cell cycle is regulated during organogenesis is not well understood. Bruno-Like RNA binding proteins bind to consensus sequences in the 3′UTR of specific mRNAs and repress protein translation, but much of this functional information is derived from studies on mainly two members, Drosophila Bruno and vertebrate BrunoL2 (CUGBP1). There are however, six vertebrate and three Drosophila Bruno family members, but less is known about these other family members, and none have been shown to function in the endoderm. We recently identified BrunoL1 as a dorsal pancreas enriched gene, and in this paper we define BrunoL1 function in Xenopus endoderm development. We find that, in contrast to other Bruno-Like proteins, BrunoL1 acts to enhance rather than repress translation. We demonstrate that BrunoL1 regulates proliferation of endoderm cells through translational control of cyclin A2 mRNA. Specifically BrunoL1 enhanced translation of cyclin A2 through binding consensus Bruno Response Elements (BREs) in its 3′UTR. We compared the ability of other Bruno-Like proteins, both vertebrate and invertebrate, to stimulate translation via the cyclin A2 3′UTR and found that only Drosophila Bru-3 had similar activity. In addition, we also found that both BrunoL1 and Bru-3 enhanced translation of mRNAs containing the 3′UTRs of Drosophila oskar or cyclin A, which have been well characterized to mediate repression. Lastly, we show that it is the Linker region of BrunoL1 that is both necessary and sufficient for this activity. These results are the first example of BRE-dependent translational enhancement and are the first demonstration in vertebrates of Bruno-Like proteins regulating translation through BREs.  相似文献   

19.
Ashbya gossypii has been an ideal system to study filamentous hyphal growth. Previously, we identified a link between polarized hyphal growth, the organization of the actin cytoskeleton and endocytosis with our analysis of the A. gossypii Wiskott-Aldrich Syndrome Protein (WASP)-homolog encoded by the AgWAL1 gene. Here, we studied the role of AgSAC6, encoding a fimbrin in polarized hyphal growth and endocytosis, and based on our functional analysis identified genetic interactions between AgSAC6 and AgWAL1. SAC6 mutants show severely reduced polarized growth. This growth phenotype is temperature dependent and sac6 spores do not germinate at elevated temperatures. Spores germinated at 30 °C generate slow growing mycelia without displaying polarity establishment defects at the hyphal tip. Several phenotypic characteristics of sac6 hyphae resemble those found in wal1 mutants. First, tips of sac6 hyphae shifted to 37 °C swell and produce subapical bulges. Second, actin patches are mislocalized subapically. And third, the rate of endocytotic uptake of the vital dye FM4-64 was reduced. This indicates that actin filament bundling, a conserved function of fimbrins, is required for fast polarized hyphal growth, polarity maintenance, and endocytosis in filamentous fungi.  相似文献   

20.
Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号